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Abstract—This paper investigates cell-free massive multiple
input multiple output systems with a particular focus on uplink
power allocation. In these systems, uplink power control is highly
non-trivial, since a single user terminal is associated with multiple
intended receiving base stations. In addition, in cell-free systems,
distributed power control schemes that address the inherent
spectral and energy efficiency targets are desirable. By utilizing
tools from game theory, we formulate our proposal as a non-
cooperative game, and using the best-response dynamics, we
obtain a distributed power control mechanism. To ensure that this
power control game converges to a Nash equilibrium, we apply
the theory of potential games. Differently from existing game-
based schemes, interestingly, our proposed potential function has
a scalar parameter that controls the power usage of the users.
Numerical results confirm that the proposed approach improves
the use of the energy stored in the battery of user terminals and
balances between spectral and energy efficiency.

Index Terms—Cell-free systems, game theory, Nash equilib-
rium, potential game, power control, radio resource allocation.

I. INTRODUCTION

Radio resource allocation is a major issue in the design of
modern mobile networks. In interference-limited systems, for
example, power control plays an indispensable role in manag-
ing interference, ensuring proper signal strength at the intended
receivers and saving energy. Recognizing the scarcity of the
energy resource and the growing worldwide energy concern,
efficient power control solutions have definitely become a key
requirement for the continued success of wireless systems [1]–
[3]. Especially related to the uplink and given the ever-
increasing growth in mobile subscriptions, an efficient power
allocation strategy is important to reduce energy demands and
battery consumption. By mitigating interference levels, power
control has also the advantage of providing a more uniform
throughput among users. Furthermore, an optimized energy
consumption contributes to reducing environmental impacts,
e.g., heat dissipation and electronic pollution [4].

However, the power management in cellular networks is
a fairly complex problem. In general, efficiently controlling
power usage with multiple interfering users may lead to non-
polynomial time (NP)-hard problems, and in these cases ob-
taining optimal solutions is extremely challenging. Normally,
within the power allocation framework, the main difficulties
in finding alternative solutions are the performance coupling
among the users as well as their inherently selfish behav-

iors. Consequently, a good solution needs to deal with the
interactions among several independent users with contrasting
interests. In this context, game theory provides a natural
framework for developing mechanisms when many individuals
with conflicting interests interact. Therefore, it is a promising
approach to study interactions among contending users in
order to seek feasible and practically viable solutions [5], [6].
Indeed, there has been growing interest in adopting game-
theoretic methods to propose alternative solutions in mobile
communications, see, e.g., [7]–[12].

In [7] and [8], the authors focused on an uplink power
control game-based solutions for orthogonal frequency divi-
sion multiple access (OFDMA) systems and cognitive radio
networks, respectively. To address the problem of minimizing
the sum of the mean square errors (MSEs), power control
schemes for the uplink of massive multi-user multiple input
multiple output (MU-MIMO) systems were proposed in [9]–
[11]. More specifically, considering block fading channels, [9]
and [10] relied on game theory to optimize the pilot-to-data
power ratio assuming single and multi-cell cases, respectively.
Likewise, a game-based approach to controlling the pilot and
data power levels was presented in [11] while considering
more realistic auto-regressive channels. On the other hand,
in more recent network architectures such as cell-free, game-
theoretic approaches to radio resource allocation have not been
widely explored in the literature, mainly related to the uplink.
Recently, in [12], a power control game was proposed for cell-
free massive multiple input multiple output (MIMO) systems,
but the authors focused on the downlink.

Inspired by the above discussion, this paper considers
the problem of power control for the uplink of cell-free
massive MIMO systems. Due to the inherent competitive
nature of the multi-user and user-centric environment, we
use a game-theoretic framework and model the problem as
a strategic non-cooperative game, which can often provide
feasible and convenient alternatives for a distributed imple-
mentation. Specifically, we use novel payoff functions based
on an adapted signal-to-interference ratio (SIR) expression.
More importantly, different from existing works, our solution
is designed as a parameterized potential game for which the
existence and uniqueness of a Nash equilibrium is ensured.
Thereby, we show that the proposed power control achieves
efficient solutions with respect to different network objectives
such as sum-rate maximization, max-min fairness or power978-1-6654-5975-4/22 © 2022 IEEE
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consumption minimization.

II. NETWORK MODEL

We consider a cell-free massive MIMO system consisting of
 single-antenna user equipments (UEs) and ! access points
(APs) equipped with # antennas grouped in the sets K and
L, respectively. The APs and UEs are deployed randomly in a
wide area without boundaries. A central processing unit (CPU)
connects with the APs via a backhaul network.

Particularly, we analyze a cell-free massive MIMO system
operating in time division duplex (TDD) mode with a pilot
phase for channel estimation and a data transmission phase.
Each coherence block is divided into gp channel uses for uplink
pilots, gu for uplink data and gd for downlink data such that
gc = gp+gu+gd. The channel between AP ; and UE : is denoted
as h:; ∈ C# and h: =

[
hT
:1, . . . , h

T
:!

]T ∈ C#! is the collective
channel from all APs. In each coherence block, an independent
realization from a correlated Rayleigh fading distribution is
drawn as h:; ∼ NC (0,R:;), where R:; is the spatial correlation
matrix describing the spatial property of the channel and
V:; = tr(R:;)/# is the large-scale fading coefficient that
describes pathloss and shadowing [13], [14]. The Gaussian
distribution models the small-scale fading whereas the posi-
tive semi-definite correlation matrix R:; describes the large-
scale fading, including shadowing, pathloss, spatial channel
correlation and antenna gains. Given that the APs are spatially
distributed in the system, the channel vectors of different APs
are independently distributed, i.e., E

{
h:;′ (h:;)H

}
= 0 when

;
′
≠ ;. The collective channel is distributed as h: ∼ NC (0,R: ),

where R: = diag (R:1, . . . ,R:!) ∈ C#!×#! is the block-
diagonal spatial correlation matrix [13].

We define a set of block-diagonal matrices D: =

diag (D:1, . . . ,D:!) ∈ C#!×#! , : ∈ K, where D8; ∈
C#×# , 8 ∈ K and ; ∈ L is the set of diagonal matrices,
determining which AP antennas may transmit to which UEs.
More specifically, the =-th diagonal entry of D8; is 1 if the =-th
antenna of AP ; is allowed to transmit and to decode signals
from UE : , and 0 otherwise. Based on the definition of the set
of matrices D8; , we define a matrix A ∈ R ×! specifying the
AP selection, where �:,; = 1 if AP ; is allowed to transmit
and to decode signals from UE : , i.e., if tr (D:;) > 0, and 0
otherwise. For the conciseness of mathematical descriptions,
we denote by M: = {;

�� �:,; = 1, ; ∈ L} the subset of APs
serving UE : . Meanwhile, D; = {:

�� �:,; = 1, : ∈ K} is the
subset of UEs served by AP ;.

A. Uplink pilot-based channel estimation

We consider that there are gp mutually orthogonal gp-length
pilots, with gp being a constant independent of  . Let SC ⊂ K
be the subset of UEs assigned to pilot C. When the UEs in SC
transmit, the received signal ypilot

C;
∈ C# at AP ; is

ypilot
C;

=
∑
8∈SC

√
gpd8h8; + nC; , (1)

where d8 is the transmit power of UE 8, gp is the processing
gain, and nC; ∼ NC (0, f2I# ) is the thermal noise. Note

that, since we assume a massive access scenario with a large
number of UEs, i.e.,  > gp, several UEs share the same pilot
as shown in (1), leading to pilot contamination.

For estimating the channels, the classic minimum mean
squared error (MMSE) criterion has been recurrently em-
ployed in the literature. The MMSE estimate of h:; for
UE : ∈ SC is ĥ:; =

√
gpd:R:;	−1

C;
ypilot
C;

, where 	C; =∑
8∈SC gpd8R8; + f2I# is the correlation matrix of (1). The

estimated channel ĥ:; and estimation error h̃:; = h:; − ĥ:;
are independent vectors distributed as ĥ:; ∼ NC (0,B:;) and
h̃:; ∼ NC (0,C:;), where B:; = E

{
ĥ:;ĥH

:;

}
= gpd:R:;	−1

C;
R:;

and C:; = E
{
h̃:;h̃H

:;

}
= R:; − B:; .

B. Uplink data transmission

During the uplink data transmission, AP ; receives the signal
y; ∈ C# from all UEs, as

y; =
∑
:∈K

h:;B: + n; , (2)

where B: ∈ C is the signal transmitted from UE : with power
d: and n; ∼ NC(0, f2I# ). However, since only a subset of
APs take part in the signal detection, the estimate of B: is:

B̂: =
∑
;∈L

vH
:;D:;y;

= vH
:D:h: B: +

∑
8∈K\{: }

vH
:D:h8B8 + vH

:D:n, (3)

where v:; ∈ C# is a receive combining vector of AP ; for UE
: , v: =

[
vT
:1, . . . , v

T
:!

]T ∈ C#! denotes the collective of these
combining vectors and n =

[
nT

1 , . . . , n
T
!

]T ∈ C#! collects all
the noise vectors.

Preferably, for large-scale networks, it is more interesting to
direct the main computational tasks to the APs in a distributed
way and, thus, avoid overloading the CPU. Therefore, instead
of sending {ypilot

C;
}∀C and y; to the CPU, each AP ; locally

selects the combining vector v:; and then it preprocesses its
signal by computing local estimates of the data as B̂:; =

vH
:;

D:;y; . Next, the local estimates of all APs that serve UE
: are sent to the CPU for final estimate of B: , which is given
by B̂: =

∑
;∈L B̂:; . We utilize the use-and-then-forget bound to

obtain the achievable spectral efficiency (SE).

Lemma 1. [13], [14]. An achievable uplink SE for UE : is

SE: =
gu
gc

log2 (1 + SINR: ), (4)

where

SINR: =

d:
��E{vH

:
D:h: }

��2∑
8∈K

d8E
{��vH

:
D:h8

��2} − d: ���E{vH
:
D:h: }

���2 + f2E
{����D:v: ����2} .

(5)

In general, any combining vector that depends on the local
channel estimates and statistics can be used in the signal-to-
interference-plus-noise ratio (SINR) expression (5), but the
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expectations in it cannot be computed in closed form for any
set of values {v:;}∀:,; . With simpler combining vector struc-
tures, such as maximum ratio combining (MRC), i.e., when
v:; = ĥ:; , it is possible to obtain closed form expressions.
Nevertheless, the performance of MRC is quite limited, and
significant performance gains can be obtained when using
combining vectors also with distributed structures but based on
the MMSE criterion, such as local partial MMSE (LP-MMSE)
combining [13], [14], whose combining vector vLP−MMSE

:;
is:

vLP−MMSE
:; = d:

( ∑
8∈D;

d8

(
ĥ8;ĥH

8; + C8;
)
+ f2I#

)−1

ĥ:; . (6)

However, when using {vLP−MMSE
:;

}∀:,; the SINR expression
in (5) can only be computed via Monte Carlo simulations [13].

III. RESOURCE ALLOCATION

In this section, we describe the radio resource management
employed in the network that consists of two parts. In the first
part, we simply adopt the algorithm for joint initial access,
pilot assignment, and cluster formation proposed in [13, See
Section V-A]. Then, in the second part, differently from [13],
we pay special attention to power control and propose a game-
theoretic model of the interactions among users assuming
a distributed management framework, which is presented in
details in the following subsections.

A. Game Theoretic Approach

In the context of game theory, the players are consid-
ered as entities with the ability of observation and reaction.
For the proposed game model, in order to mitigate poten-
tial interference levels in the uplink and obtain a suitable
data power profile, the players are the users themselves.
We define the proposed non-cooperative game G as G ={
K, {P: }∀: , {`: (d: , 1 (−:) )}∀:

}
, where K is the set of UEs,

i.e., a finite set of players. For a given UE : , P: = [dmin, dmax]
is a finite set of available strategies or actions, where dmin > 0
and dmax ≤ %max with %max being the maximum uplink data
power. In the context of the proposed game, the data power
value d: ∈ P: denotes the strategy chosen by UE : and
1 (−:) denotes the strategies of all the UEs other than UE : .
Therefore, 1 = (d: , 1 (−:) ) = [d1, · · · , d: , · · · , d ]T ∈ R 
represents the profile of data powers of all UEs, i.e., a power
allocation strategy for the system. Moreover, `: (d: , 1 (−:) ):
� → R, is a real-valued utility/payoff function where, � =

P1 × P2 × · · · × P is the strategy space. Note that, for every
chosen strategy by UE : , the power profile (d: , 1 (−:) ) is
associated with a payoff, i.e., `: (d: , 1 (−:) ). Thus, the payoff
function quantifies the preferences of each UE to a given
action, provided the knowledge of others’ actions.

Typically, a non-cooperative game is a procedure where
each player will selfishly choose an action that improves its
own utility function given the current strategies of the other
players. Then, a key issue when designing a game is the
choice of the payoff function. Specifically, for game G the
independent actions of the UEs to set their power values should

not only provide satisfactory individual solutions but should
also mitigate potential interference levels in the network.
Thereby, we design a payoff function that enables UEs to have
lower data power levels while causing less interference in other
UEs, given by:

`: (U, d: , 1 (−:) ) = W: (U, d: , 1 (−:) ) + _: (U, d: , 1 (−:) ), (7)

where

W: (U, d: , 1 (−:) ) =

∑
∀8≠:

d8

( ∑
;∈M8

V8,;

)U
d:

( ∑
;∈M:

V:,;

)U , (8a)

_: (U, d: , 1 (−:) ) = d:
( ∑
;∈M:

V:,;

)U ∑
∀8≠:

1

d8

( ∑
;∈M8

V8,;

)U ,
(8b)

and U is an input parameter of game G.
Particularly, the term W: (U, 1) is based on the recipro-

cal of the SIR expression shown in [14, Section V, Equa-
tion (51)]. Initially, assuming the particular case where
{_: (U, d: , 1 (−:) )}∀: = 0 and given U and 1 (−:) fixed, it
is easy to see that the best strategy or action for each UE
exists and it would be to minimize the payoff function in (7)
by choosing the highest possible value for the data power.
However, we add the term _: (U, 1) to the payoff function
`: (U, 1) in order to make the decision of the UEs non-trivial
and especially less selfish. In a general case, i.e., even if
{_: (U, d: , 1 (−:) )}∀: ≠ 0, it is possible to obtain a single value
that minimizes (7) as it is a convex function in P: ,∀: ∈ K.
By solving m`: (U, d: , 1 (−:) )/md: = 0, we can find the unique
minimizer, d∗

:
, of (7), as follows:

d∗: =

√√√√√√√√√√√(∑
∀8≠:

d8

( ∑
;∈M8

V8,;

)U) ©«
∑
∀8≠:

( ∑
;∈M:

V:,;

)2U

d8

( ∑
;∈M8

V8,;

)U ª®®®®¬
−1

. (9)

From the point of view of the UEs, the term _: (U, 1) in (7)
represents a punishment for the UE who decides to excessively
increase the value of the chosen data power. As a result,
_: (U, 1) can reduce interference levels in the system and avoid
a greedy power allocation strategy, i.e., d: = %max, ∀: ∈ K.

In game theoretic approaches, we are interested in finding
a Nash equilibrium as a solution. A Nash equilibrium is a
strategy profile that satisfies the condition that no player can
unilaterally improve its own payoff as shown in Definition 1:

Definition 1. An n-Nash equilibrium of parameterized game
G(U) is achieved when the payoff function `: (U, 1) is such
that for all UE ::

`: (U, 1) ≤ `:
(
U, d: , 1−(:)

)
+ n, d: ∈ P: . (10)

However, games may have a large number of Nash equilib-
rium points or may not have any. Generally, finding or even
characterizing the set of these equilibrium points in terms of
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existence or uniqueness is a difficult task. Fortunately, there is
a particular case of non-cooperative games called potential
games for which the existence and uniqueness of a Nash
equilibrium is ensured [15]. Basically, in a potential game
the incentive of all players to change their actions can be
expressed by a global payoff function called potential function.
Mathematically, the proposed parameterized game G(U) is a
potential game if it complies with Definition 2 [5].

Definition 2. If the proposed parameterized game G(U) is a
potential game, then there exists a function D : � → R such
that ∀: ∈ K and ∀d: , d′: ∈ P: :

D(U, d′: , 1 (−:) ) − D(U, d: , 1 (−8) ) =
`: (U, d′: , 1 (−8) ) − `: (U, d: , 1 (−:) ). (11)

In this case, the function D(·) is called an exact potential
function for the parameterized game G(U) [5], [6].

Note that based on Definition 2, G(U) is a potential
game if it is possible to define a potential function, i.e., an
UE-independent function that measures the same amount of
change or marginal payoff for any unilaterally deviating UE.
By exploiting the definition of payoff function in (7), we can
prove that G(U) is a potential game by showing that it has an
exact potential function as explained in the following result:

Corollary 1. There is an exact potential function for the
parameterized game G(U) and it is given by:

D(U, 1) = 1
2

∑
:∈K

Δ`: (U, 1). (12)

Proof. This can be demonstrated with a relatively simple se-
quence of steps. Let d:̃ , d′

:̃
∈ P:̃ be two different and arbitrary

data power values for a generic UE :̃ . Suppose that UE :̃

changes its data power from d:̃ to d′
:̃
, then the change of its

payoff function is: Δ`:̃ = `:̃ (U, d′:̃ , 1 (−:̃) ) − `:̃ (U, d:̃ , 1 (−:̃) ).
Moreover, the change of D(U, 1) is: ΔD = D(U, d′

:̃
, 1 (−:̃) ) −

D(U, d:̃ , 1 (−:̃) ). By developing the expressions Δ`:̃ and ΔD,
it is possible to show that: Δ`:̃ = ΔD, and thus D(U, 1) is an
exact potential function for the parameterized game G(U). �

B. Proposed Iterative Algorithm

In order to develop a potential game-based approach to
address the problem of power control for the uplink of
cell-free massive MIMO systems, we propose a procedure
where the power allocation is updated every iteration for each
UE until reaching convergence. However, before specifically
discussing this procedure, in order to achieve a practical
implementation we define the following vector / ∈ R : / =
[b1, · · · , b: , · · · , b ]T, where b: = d:

( ∑
;∈M:

V:,;

)U
, : ∈ K.

Note that using the definition of /, we can express the payoff
function for each UE in terms of / only, as follows:

`: (/) =

∑
∀8≠:

b8

b:
+ b:

∑
∀8≠:

1
b8
. (13)

The complete procedure for the proposed power alloca-
tion strategy (PAS) based on game theory is described in
Algorithm 1. First, in line 1, we can define 1 (0) using any
naive power allocation strategy, e.g., d (0)

:
= %max/=, : ∈ K,

where = ∈ R∗+. Moreover, the input parameter U must also be
initialized, which is an important variable for the game as will
be discussed in Session IV.

Algorithm 1 Game-based power allocation strategy (Game-PAS)

1: Input: Initialize 1 (0) , U ∈ R, ; ← 0, and n > 0;
2: Output: Data power vector 1;
3: loop
4: UEs report the current data power to Master AP;
5: Master AP measures and broadcasts / (;) ;
6: Find the payoff function using / (;) and (13);
7: Find d★

:
making d★

:
← min{d∗

:
, %max }, where d∗

:
is defined in (9);

8: for : ∈ K do
9: if `:

(
d
(;)
:
, 1 (;)−(:)

)
− `:

(
d★
:
, 1 (;)−(:)

)
> n then

10: d
(;+1)
:

← d★
:

;
11: else
12: d

(;+1)
:

← d
(;)
:

;
13: end if
14: end for ; ← ; + 1;
15: end loop when d(;)

:
= d
(;−1)
:

, : ∈ K;

In the outer loop (lines 3-15) the following procedure is
repeated: after information exchange between the UEs and the
Master AP, each UE will independently choose a best response
to the actions of the other UEs according to line 7. Then,
in case of an improvement of the payoff function, each UE
updates its data power, otherwise the current data power value
is kept. Analogously to the best response approach in line 7,
the power update also occurs individually, i.e., in the inner
loop (lines 8-14) the power update for each UE is performed
in a distributed way and thus it does not depend on  . Finally,
Algorithm 1 ends when no UE can improve its payoff by
unilateral deviation (cf. Definition 1).

C. Signaling and Convergence Analysis

During the execution of the proposed algorithm, an over-
the-air signaling scheme must be considered for the two-
way communication between the UEs and the Master AP, as
performed in the lines 4 and 5 of Algorithm 1. Initially, each
UE reports to the Master AP its current data power value.
Next, the Master AP measures and then broadcasts /. This is
how each user receives the power allocation from other users.

Regarding the convergence of Algorithm 1, all finite po-
tential games have the finite improvement path property [5].
Consequently, if every improvement path is finite and the best
response approach provides an improvement of at least n , then
it must necessarily converge [5, See Chapter 5, Theorem 19].

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we conduct simulations relying on the
setup introduced in [13]. In summary, the APs and UEs are
independently and uniformly distributed in a 2 km × 2 km
square. We apply the wrap-around technique to approximate an
infinitely large network. Moreover, we assume that gc = 200,
gp = 10, gu = 190, %max = 100 mW and a 20 MHz bandwidth.
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A. Convergence Behavior
Fig. 1 shows the evolution of total power consumption of

the UEs for different values of U versus the iterations of the
game. For this result, we assume that initially all UEs transmit
at their maximum power, i.e., d (0)

:
= %max, : ∈ K. Thus, the

total power usage at the beginning of the game is  · %max =

1000 mW. In particular, when U = 0 note that no UE has an
incentive to change the initial power allocation strategy and in
that case the convergence of Algorithm 1 is immediate.

0 4 8 12 16 20

400

500

600

700

800

900

1000

Fig. 1: Impact of U on the total power consumption versus iterations of the game
assuming ! = 100, # = 4 and  = 10.

On the other hand, in a more general case when U ≠ 0, the
convergence behavior is different. As U increases, the strategy
followed by the UEs converges to situations where the power
expenditure is decreasing, i.e., the UEs are turned to a low
power mode. As a result, this allows to improve the use of the
energy stored in the battery and it shows that, interestingly, U
has a direct impact on energy-saving. Obviously, as the values
of U vary, we also obtain different data rates for the UEs and,
therefore, non-trivial solutions especially in terms of energy
efficiency (EE) defined as bit/J can be obtained.

B. Performance Comparison
In this section, the performance evaluation of the proposed

power control is evaluated based on two aspects. First, we
show the performance of Algorithm 1 in three different
scenarios, namely, cell-free (discussed in Section II), small
cell and massive MIMO systems. This is interesting as it
shows the good adaptability of game theory-based approaches
to various frameworks. In each scenario, we also consider a
baseline scheme, in which each UE transmits at full power,
i.e., we use the greedy power allocation strategy (Greedy-
PAS) as benchmarking. It has been shown in the literature
that this power allocation strategy can provide good SE and
fairness [13]. Furthermore, we consider three different metrics:
the total system SE, the minimum SE, and the total system
EE, which is the sum of the EEs of each UE, defined as
the ratio between the SE and the corresponding consumed
power. Finally, our power control (Game-PAS) is performed
for different U within the range [0, 2] and the best performance
for each metric is depicted.

Fig. 2 plots the total spectral efficiency versus the number of
users. Specifically in this metric, the performance obtained by

10 20 30 40 50
20

40

60

80

100

120

140

160

180

Fig. 2: Total spectral efficiency versus number of users assuming ! = 100, # = 4 for
the cell-free/small cell setups and ! = 4, # = 100 for the massive MIMO case.

the proposed and baseline solutions are the same in all simu-
lated setups. Basically, it means that from the point of view of
total SE, and due to its simpler implementation, the Greedy-
PAS solution has a better trade-off between performance and
computational cost and is, therefore, the best option.

10 20 30 40 50
-1

-0.5

0

0.5

1

1.5

2

2.5

10 20 30 40 50

0

0.02

0.04

Fig. 3: Minimum spectral efficiency versus number of users assuming ! = 100, # = 4
for the cell-free/small cell setups and ! = 4, # = 100 for the massive MIMO case.

On the other hand, for the cell-free and small cell setups,
significant performance gains in terms of minimum SE can
be achieved using the proposed power control, as shown in
Fig. 3. Moreover, we highlight that the gains tend to increase
as the number of UEs increases. For the cell-free case, for
example, we have average percentage gains around 8% and
26% when  = 20 and  = 50, respectively. Note that even
more expressive gains of the proposed solution are obtained
for the small cell case. In general, under interference-limited
environments, as the number of UEs in the system increases,
the power control problem becomes more relevant. However,
trivial power allocation strategies usually neglect the impact of
increasing UEs and, consequently, are ineffective in mitigating
network interference by means of power control.

Finally, we plot the EE in Fig. 4. First, we highlight that the
impact of U on the power usage shown in Fig. 1 has a direct
effect in achieving enhanced EEs. Further, note that similarly
to the minimum SE metric, the total EE performance gains
also increase as  increases. This is particularly interesting
as increasing the number of UEs in the network can rapidly
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Fig. 4: Total energy efficiency versus number of users assuming ! = 100, # = 4 for
the cell-free/small cell setups and ! = 4, # = 100 for the massive MIMO case.

lead to a growing concern with excessive energy demand,
especially for the Greedy-PAS solution. At this point, energy
efficient solutions are important and a more robust power allo-
cation strategy such as the Game-PAS is critical to reduce the
energy cost per transmitted bit and to improve the greenness
of wireless systems.

C. Trade-off between EE and SE
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Fig. 5: Trade-off curve between EE and SE for the cell-free and small cell setups
assuming ! = 100, # = 4 and  = 10.

It is well-known that EE and SE are conflicting objectives
and there exists an inherent trade-off between them. Thus, in
the context of the proposed solution, it is interesting to show
the impact of parameter U on the EE-SE trade-off. Fig. 5
presents the achieved SE and EE with different values of
U for the cell-free and small cell setups. From the point of
view of maximizing the SE, when U = 0.00, as discussed in
Fig. 1, the Game-PAS solution is equivalent to the Greedy-
PAS solution and, in this case, the systems achieve high SE.
However, as U increases, the EE is gradually improved until
reaching a maximum value when U = 0.60. Also, for other
values of U, different solutions for EE and SE can be obtained.
Therefore, Fig. 5 demonstrates that the proposed solution is
efficient in achieving a flexible trade-off between EE and SE.
For example, for small cells, when U = 0.30, the EE metric
has a gain around 20% with a small cost in terms of SE.

V. FINAL COMMENTS

In this paper, we proposed a distributed game-theoretic
method for power control in the uplink of cell-free systems.
Simulations indicate that the proposed solution achieves sig-
nificant performance gains in terms of minimum SE floor
and power consumption with an improved EE. Moreover, by
varying the U, we showed that it is possible to achieve dif-
ferent solutions for EE and SE. Hence, the proposed solution
simplifies the process of joint optimization of these metrics
and allows to obtain useful trade-offs between EE and SE.
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