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To enable pervasive applications of cellular-connected unmanned aerial vehicles (UAVs), localization 
plays a key role. The successful reception of localization signals from multiple base stations (BSs) is 
the first step to localize targets, which is called cellular localizability. In this paper, we propose an 
analytical framework to characterize the B-localizability of UAVs, which is defined as the probability 
of successfully receiving localization signals above a certain signal-to-interference plus noise ratio (SINR) 
level from at least B ground BSs. Our framework considers UAV-related system parameters in a three-
dimensional environment and provides a comprehensive insight into factors affecting localizability such 
as distance distributions, path loss, interference, and received SINR. We perform simulation studies to 
explore the relationship between localizability and the number of participating BSs, SINR requirements 
of the received localization signals, air-to-ground channel characteristics, and network coordination. We 
also formulate an optimization problem to maximize localizability and investigate the effects of UAV 
altitude in different scenarios. Our study reveals that in an urban macro environment, the effectiveness 
of cellular network-based localization increases with altitude, with localizability reaching 100% above 60
meters. This finding indicates that utilizing cellular networks for UAV localization is a viable option.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
1. Introduction

Localization of unmanned aerial vehicles (UAVs) is a critical 
component to enable safe and efficient operation in diverse appli-
cation scenarios such as urban air mobility (UAM) [2–4]. Accurate 
localization data empowers UAV operators to optimize flight paths, 
avert collisions, and facilitate timely search and rescue missions 
[5,6].

Automatic Dependent Surveillance-Broadcast (ADS-B) technol-
ogy, relying on the Global Positioning System (GPS) [6] is a notable 
means of localizing aerial vehicles, such as airplanes. Nonetheless, 
for UAVs, exclusive reliance on GPS raises safety concerns, particu-
larly in scenarios involving beyond visual line of sight (LoS) oper-
ations. The susceptibility of GPS to issues like erratic performance 
in urban landscapes and GPS spoofing from diverse sources [7–9]
exacerbates concerns. These challenges necessitate exploration into 
alternative localization strategies.

A promising solution is cellular network-based localization, 
which presents several advantages. Firstly, unlike ground users, 
UAVs encounter LoS channel conditions from multiple neighboring 
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base stations (BSs) [10], rendering them suitable for range-based 
localization. Secondly, the integration of UAVs into cellular net-
works permits location data sharing, fostering secure and safe op-
erations [11]. Lastly, the widespread coverage of cellular networks 
enables UAV localization without requiring additional hardware de-
ployment.

Cellular network-based localization is a part of range-based 
methods, generally involving two stages [12]. The first stage entails 
the successful reception of multiple localization signals (reference 
signals) by a receiver to obtain location-related information. The 
second stage employs these measurements to estimate the agent 
node’s location through the estimation algorithm at the receiver. 
The selection of the estimation algorithm will depend on the em-
ployed localization techniques, such as received signal strength 
(RSS), time of arrival (TOA), time difference of arrival (TDOA), or 
angle of arrival (AOA) [12].

Regardless of the chosen localization technique, the efficacy of 
localization hinges on three critical factors [13,14]: (i) the target’s 
spatial relationship with nearby BSs, (ii) the number of participat-
ing BSs, and (iii) the precision of the selected location estimation 
algorithm. While most literature emphasizes the third factor to 
enhance estimation precision [15,16], it assumes uninterrupted re-
ception of location reference signals from a number of sources. 
This assumption becomes less applicable, particularly for UAVs, due 
to probabilistic air-to-ground (A2G) channel conditions. To deepen 
our understanding of the opportunity and limitations imposed by 
le under the CC BY-NC-ND license (http://
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A2G links on the successful reception of the localization signals, 
we introduce the metric cellular localizability. This metric signifies 
the probability that a UAV receives detectable localization signals 
from a specific number of ground BSs [13,1]. Detectable signals are 
those where the signal-to-interference plus noise ratio (SINR) is 
greater than a threshold. Furthermore, the number of required sig-
nals depends on the localization method used in estimating the 
location of the target. For example, localization methods imple-
menting TDOA-based techniques require signals from at least four 
BSs for the location estimation of the target device.

It is worth mentioning that, unlike conventional metrics such 
as the Cramer Rao Lower Bound (CRLB) that set a lower bound-
ary for error variance related to accuracy, localizability emphasizes 
successful signal reception probability. Consequently, localizability 
is not directly concerned with the accuracy of localization. The 
performance in terms of the error bound given by CRLB does not 
consider the non-deterministic conditions such as network cover-
age, traffic load, and channel condition. Instead, it only considers a 
deterministic network with perfect channel conditions for the gen-
eral analysis of all possible variations.

In most of the existing literature, the problem of the localiza-
tion of a generic 3D target with range-based techniques has been 
studied in the context of improving the estimation algorithms with 
favorable channel conditions. The authors in [17], [18], and [19]
under the assumption of LoS channel conditions have developed 
3D location estimators for RSS and AOA range-based techniques. 
These works are not directly applicable to the UAVs as they assume 
to receive the required strong decodable signals for the estimation.

Y. Li et al. in [20] consider cellular networks for RSS-based lo-
calization of the UAVs to calculate the CRLB. They assume a generic 
LoS channel model and do not consider localizability before calcu-
lating the estimation bounds. In literature, consideration of cellular 
localizability is limited to terrestrial targets only. J. Schloemann et 
al. in [13] investigate cellular localizability for terrestrial user de-
vices with the help of stochastic geometry. They also show how 
obtaining a higher number of participating BSs enhances localiza-
tion precision performance. However, their approach assumes an 
infinite number of randomly distributed BSs across an unbounded 
area, an impractical assumption. In [21], the authors adopt narrow-
band Internet-of-Things (NB-IoT) to study the localizability of the 
ground sensor nodes. However, they only consider the localization 
of devices on the ground without considering the challenges of 3D 
communications. Cellular localizability performance for cellular-
connected UAVs is investigated in [1] via simulations by capturing 
the inherent nature of A2G channels and network dynamics such 
as interference. However, the statistical characterization of the lo-
calizability is missing, which requires a deeper analytical investi-
gation of the path loss, received power, interference, and SINR at 
the UAV.

In this work, our focus is on providing a comprehensive analysis 
of cellular localizability for UAVs. Exploring the impact of various 
factors on cellular localizability like dynamic A2G channel between 
target UAV and ground BSs. The effect of channel parameters such 
as path loss exponent which not only depend on the LoS condi-
tions but also on the altitude of the UAV. The importance of the 
coordination among BSs to limit the interference in the reception 
of localization signals and localization performance. Additionally, 
the effect of the network load on the participation of BSs in the 
localization process.

1.1. Main contribution

In this paper, with the help of the 3GPP channel model [22] for 
cellular-connected UAVs, we study the localizability performance 
of the UAVs in terms of different network parameters such as al-
titude, SINR threshold, and network load. Our main contributions 
2

are summarized as follows as compared to the most related works 
[1,13,21]:

• We propose an analytical framework to analyze UAV local-
izability. Our interest is the downlink communication-based 
localization for cellular-connected UAVs. The impact of UAV 
altitude, the number of participating BSs, and network coordi-
nation on the localizability performance are studied in detail. 
We investigate the effect of the environment for three dif-
ferent scenarios, which are urban micro (UMi), urban macro 
(UMa), and rural macro (RMa) scenarios.

• Based on the system model, we derive the cumulative distribu-
tion functions (CDFs) and probability density functions (PDFs) 
of the path loss, interference, and received SINR at the target 
UAV. It includes undertaking the A2G channel characteristics 
into consideration such as the effect of the UAV altitude on 
LoS and NLoS channel conditions.

• We provide the approximated analytical results and compare 
them with simulation results for localizability. Simulation re-
sults for different scenarios are also provided.

• An optimization problem is formulated to find the altitude 
that maximizes the localizability. We performed approxima-
tions to solve the problem and obtain localizability perfor-
mance.

• We provide insights toward the design parameters such as 
processing gain requirements and network coordination to en-
hance the signal strength for the localizability of UAVs.

The paper is organized as follows. Section 2 explains our system 
model. Section 3 provides a theoretical analysis of the localizability 
and optimization problem formulation for maximizing the local-
izability with respect to the altitude of UAVs. Section 4 presents 
performance results of the localizability for different network pa-
rameters and channel conditions. Finally, Section 5 concludes our 
paper.

2. System model

We model the network as a two-tier cellular network with 
hexagonal tessellation for analytical tractability, which is a com-
mon assumption for 5G and beyond networks [23]. The two-layer 
hexagonal tessellation comprises 19 BSs (denoted as T = 19), the 
UAV to be localized (also referred to as target UAV) is assumed 
to be within the boundaries of the center cell at an altitude de-
noted by hU T , depicted in Fig. 1. The dashed brown arrows shown 
in Fig. 1 represent the localization signals received by the target 
UAV from the BSs participating in the localization process. Dis-
tance relations between the UAV and one of the participating BSs 
are shown with the black solid arrows in Fig. 1. Key notations to 
explain the system model are provided in Table 1.

We consider the downlink positioning, which involves the 
transmission of localization signals from the BSs to the UAV [24]. 
We also assume universal frequency reuse on the localization sig-
nals. The adjacent BSs share control information with each other 
via the high-speed backhaul links e.g., X2 interface shown in Fig. 1. 
The X2 links enable synchronization and coordination among the 
BSs [25]. We consider the three 3GPP-defined scenarios for the 
UAVs [22]; UMi-AV (urban micro with aerial vehicles), UMa-AV 
(urban macro with aerial vehicles), and RMa-AV (rural macro with 
aerial vehicles).

For any localization method to work, the target UAV must re-
ceive localization signals from multiple sources with an SINR value 
greater than a specific threshold. The number of sources and the 
threshold depend on the localization method implemented. For 
example, in the timing based localization, the estimated time dif-
ference translates into circles around the BS, and the intersection 



I.A. Meer, M. Ozger and C. Cavdar Vehicular Communications 44 (2023) 100677

Fig. 1. System model for cellular localizability, localization signals and distance relations.

Table 1
Key notations used.

Notation Description

hU T ,hB S Altitude of the UAV, base station height
di 3D distance between the UAV and i-th participating BS
dk 3D distance between the UAV and k-th non-participating BS
Pt Transmitted power from the BS
ζ Independent shadowing effect
σ 2 Variance of the additive white Gaussian noise
P Lm Path loss between BS and the UAV, m ∈ {LoS, N LoS}
T Total number of BSs in the network
T Set of BSs in the network
B Number of BSs taking part in the localization of the UAVs
fc Carrier frequency used
I1 Interference from BSs participating in localization
I2 Interference from BSs not taking part in localization
I Total cumulative interference to the localization of the UAV
α SINR threshold before the processing gain
β SINR threshold after the processing gain
γ Processing gain required
p Activity factor modeling the coordination among the B participating BSs
q Activity factor modeling the network traffic load from (T − B) non participating BSs

rk
Indicator variable, equal to one with probability p,
and equal to zero with the probability (1 − p), for the k-th BSs

s j
Indicator variable, equal to one with probability q,
and equal to zero with the probability (1 − q), for the j-th BSs

P z Probability of LoS (z = LoS) and NLoS (z = N LoS)

P B Probability that B BSs have SINR greater than threshold
of these circles provides the location of the target UAV. For better 
accuracy, more BSs should participate in the multilateration proce-
dure. The minimum required number of participating BSs changes 
for different methods. For instance, in the case of AOA and TDOA, 
the minimum requirements for the number of participating BSs are 
two and four, respectively [26].

Under the same modulation and coding scheme, interference 
from the other BSs acts as one of the major hindrances in obtain-
ing localization signals from the required number of participating 
BSs. Thus, making the SINR as the most suitable metric to capture 
the effectiveness of any localization signal. Furthermore, after the 
UAVs have processed the localization signals, they transmit their 
location information with payload data. We make the assump-
tion of seamless synchronization among the participating BSs. This 
synchronization is attained through packet-based time alignment, 
commonly implemented using the Precision Time Protocol (PTP), 
which is specified as IEEE 1588 [27].
3

2.1. Channel model

In this paper, we adopt the 3GPP channel model proposed in 
[22] for cellular-connected UAVs flying below 120 m. The channel 
model depends on the probability of LoS, P LoS , which is defined as 
below:

P LoS =
{

1, d2D ≤ d1

d1

d2D
+ exp

(−d2D
p1

)(
1 − d1

d2D

)
, d2D > d1 , (1)

where d2D is the distance between the BS and the UAV projected 
on the ground plane, hU T is the altitude of the UAV as seen in 
Fig. 1. hU T can be greater or smaller than the height of the BS, 
hB S . The parameters p1 and d1 for three scenarios are given in 
Table 2.

The path loss P Lm , where m ∈ {LoS, NLoS} for the LoS and NLoS 
link conditions, respectively, are calculated as follows [22]:

P LLoS = 28.0 + 22log10(d3D) + 20log10( fc), (2)
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Table 2
3GPP channel model parameters [22].

Scenario p1 d1

UMi-AV 233.98log10(hU T ) − 0.95 max(294.05 log10(hU T ) − 432.94,18)

UMa-AV 4300log10(hU T ) − 3800 max(460 log10(hU T ) − 700,18)

RMa-AV max(15021log10(hU T ) − 16053,1000) max(1350.8 log10(hU T ) − 1602,18)
P LN LoS = −17.5 + (46 − 7log10(hU T ))log10(d3D)

+ 20log10(
40π fc

3
),

(3)

where d3D is the 3D distance between the BS and the UAV, and fc

is the carrier frequency in GHz.
We incorporate shadowing effects, where signal variations are 

modeled by a Gaussian distributed random variable ζ with a 
standard deviation that varies with height [22], described as 
4.64exp(−0.0066hU T ) (for LoS), 6 dB (NLoS). However, the effects 
of small-scale fading are neglected, as they tend to be smoothed 
out when considering the average signal strength. This average in-
corporates broader temporal factors like path loss and shadowing 
and is consistent with the current models for evaluating cellular 
localization performance [28,29].

2.2. Antenna gain

In our system model, we consider a single omnidirectional an-
tenna with unitary gain for the UAV. For the ground BSs, we as-
sume a vertical N-element uniform linear array (ULA), where each 
element is omnidirectional in azimuth with a maximum gain of 
gmax

E . Directivity as a function of the zenith angle (φ) is given by 
the following [30]:

gE(φ) = gmax
E sin2(φ), (4)

where φ is the zenith angle between the ground BS and the 
UAV. Considering half-wavelength spacing between the adjacent 
antenna elements and a fixed down-tilt angle φt , the array factor 
of the ULA is calculated as

g A(φ) = sin2(Nπ(cos φ − cosφt)/2)

N sin2(π(cos φ − cosφt)/2)
. (5)

The overall antenna gain of BSs in linear scale is calculated as

g(φ) = gE(φ) × g A(φ). (6)

2.3. SINR calculation

Based on the above channel models, the received SINR at the 
UAV at altitude (hU T ) from an ith (i ∈ T ) BS, which is at a 3D 
distance of d3D = di is calculated as

S I N Ri = Pr(hU T ,di)

I + σ 2
, (7)

where Pr(hU T , di) is the received power and is given as

Pr(hU T ,di) = Pt gi(φ)ζi P L−1
m (hU T ,di), (8)

where Pt is the transmitted power from the ith BS to the UAV 
and is assumed to be same for all the BSs, gi(φ) is the antenna 
gain, ζi denotes the independent shadowing affecting the signal 
strength. The cumulative interference from the concurrently trans-
mitting BSs excluding the ith BS is denoted by I and is calculated 
as

I =
∑

Pt gk(φ)ζk P L−1
m (hU T ,dk), (9)
k∈T and k �=i

4

where dk is the 3D distance between the UAV and the kth BS 
(k ∈ T and k �= i), which are transmitting at the same time. Among 
the |T | = T BSs, B number of BSs (B ≤ T ) with the strongest time 
average received signal strength participate in the localization pro-
cess. However, their participation is successful only if they have 
SINR greater than a given threshold.

A processing gain γ is considered to enhance the localizability 
signal strength by integrating the incoming signals in time. There-
fore, we have two SINR definitions at the receiver: pre-processing 
SINR, which is the SINR before any processing gain, and post-
processing SINR after applying the gain. The pre-processing SINR 
provided in (7) is given without the gain providing an improve-
ment on the localization signal strength to meet the requirements.

It is also important to note here that the 5G opens new dimen-
sions to improve the localization performance thanks to New Radio 
(NR) framework [29]. It proposes new capabilities such as down-
link positioning reference signal (PRS) with different numerology 
and frequency options such as frequencies below 6 GHz and above 
24 GHz. BSs can utilize different PRS sequences to reduce mutual 
interference. These sequences can follow different comb structures 
that use certain subcarriers in designated symbols [31].

In case of the UAV, as the altitude increases, the probability 
of LoS condition with ground BSs increases resulting in better re-
ception of useful signals from the intended BS. However, it also 
leads to a higher level of interference from the unintended BSs. To 
avoid interference, the B participating BSs attempt to coordinate 
and avoid allocating the same radio resources. However, perfect co-
ordination among all B BSs is not always possible. As a result, they 
simultaneously transmit their localization signals on the same ra-
dio resources with a probability p. The parameter p encapsulates 
the effectiveness of X2 link performance in facilitating coordination 
among the participating BSs. A value of p = 0 indicates perfect co-
ordination achieved through X2 links, resulting in no interference, 
while p = 1 signifies the absence of coordination via X2 links. 
Meanwhile, due to network load, each of the remaining (T − B) 
BSs may also transmit simultaneously using the same radio re-
sources with probability q. To account for coordination among the 
participating BSs and the traffic demands in the non-participating 
BSs, we introduce two independent random variables: rk for the 
participating BSs and s j for the non-participating BSs. To capture 
participating and non-participating BSs in our analysis, the SINR 
calculated in (7) can be reformulated as:

S I N Ri(B) = Pt gi(φ)ζi P L−1
m (hU T ,di)

I1 + I2 + σ 2
, (10)

where I1 represents the cumulative interference from the partici-
pating BSs and I2 represents the cumulative interference from the 
non-participating BSs. Their mathematical definitions are given as 
follows:

I1 =
B∑

k=1 and k �=i

rk Pr(hU T ,dk)

=
B∑

rk Pt gk(φ)ζk P L−1
m (hU T ,dk),

(11)
k=1 and k �=i
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I2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T∑
j=1+B

s j Pr(hU T ,d j) =
T∑

j=1+B

s j Pt g j(φ)ζ j P L−1
m (hU T ,d j),

if B < T

0, if B = T ,

(12)

where rk and s j follow Bernoulli distribution. rk and s j being equal 
to one with probability p and q, respectively, and equal to zero 
with the probability (1 − p) and (1 − q), respectively. The activity 
parameters associated with participating and non-participating BSs 
make the S I N Ri in (10) as a function of B .

3. Theoretical analysis of localizability performance

In this section, we develop a theoretical framework to analyze 
the localizability performance of a target UAV with the help of cel-
lular networks. We first derive the B-localizability as the function 
of the received SINR and the number of participating BS B . The 
received SINR dependents on the received power, cumulative inter-
ference and noise. To obtain the distribution of the received power, 
we need to calculate the distribution of the distances and path loss 
involved. These steps are provided in the sequel.

3.1. Base stations participating in the localization

Let us define a random variable 	 as the maximum number of 
BSs successfully participating in the localization process. Given our 
system model, the definition of 	 is given as follows:

	 = arg max
B∈T and B≤T

B ×
B∏

i=1

1 (S I N Ri(B) ≥ α), (13)

where B is the number of BSs participating in the localization and 
having the strongest signal at the UAV, and SINR is given as in 
(10). 1(θ) is the indicator function which is equal to 1 if θ is true 
and equal to 0 if θ is false. Hence, 	 will be equal to B when all 
the signals from the B BSs have an SINR value greater than the 
threshold.

We define B-localizability as the probability that at least B
BSs successfully participate in the localization procedure [13]. B-
localizability, P B , is defined as:

P B = Pr(	 ≥ B) = 1 − F	(B), (14)

where F	(B) is the CDF of 	 and is defined as:

F	(B) = Pr(	 < B) = 1 − Pr(	 ≥ B)

= 1 − Pr

(( B∏
i=1

1 (S I N Ri(B) ≥ α)
) = 1

)
.

(15)

The B-localizability metric can also be viewed as a coverage 
metric that quantifies the probability of receiving decodable local-
ization signals from B BSs at the receiver. For instance, in the case 
of the TDOA localization scheme that requires at least four decod-
able signals (B = 4) for unambiguous localization, P4 represents 
the probability of achieving this criterion. A value of P4 = 0.99 in-
dicates that the target UAV may receive at least four decodable 
signals with a probability of 99%.

The distribution of B-localizability in (15) depends on SINR 
distribution at the target UAV from participating BSs. Hence, we 
statistically characterize each component to calculate SINR defined 
in (10) in the following subsections.
5

Fig. 2. The random 2D distance between the UAV and the reference BSs, where the 
UAV is distributed randomly in the center cell. (a) θx is the 2D distance between 
a random point of the UAV within a cell and the BS at the center cell. (b) θy is 
the 2D distance between a random point of the UAV within a cell and the BS at a 
neighboring cell.

3.2. 2D distance and altitude distribution

The received power and interference at the target UAV are influ-
enced by the distance between the BSs and the UAV. Therefore, to 
determine the SINR distribution at the target UAV, we first need to 
calculate the distance distribution between the BSs and the UAV’s 
projection point on the ground (i.e., 2D distance). Since the target 
UAV is located randomly in the central hexagon cell, it will have 
two random 2D distances associated with it, which will depend on 
the point of reference used for their calculation. Specifically, the 
first random distance is the distance between the random location 
of the target UAV and the central BS (or the center of the hexagon 
as the reference point), denoted as θx in Fig. 2(a). The second ran-
dom distance is the distance between the random location of the 
target UAV in the central hexagon cell and any of the neighboring 
BS (used as the reference point), denoted as θy in Fig. 2(b). There-
fore, the first step is to determine the distributions of these two 
random distances: 1) the distance (θx) from a reference point in-
side the hexagon to a random point within the hexagon, and 2) 
the distance (θy) from a reference point outside the hexagon to a 
random point inside the hexagon.

Let Fθx (r) and Fθy (r) represent the CDF of θx and θy , respec-
tively. To obtain the distribution of the random distances θx and θy , 
we adopt an approach similar to that presented in [32]. This ap-
proach involves the use of decomposition and recursion techniques 
to calculate the distance distribution in a polygon. Specifically, we 
use the known distance distributions from a vertex of an arbitrary 
triangle to a random point inside, to compute the distribution of 
random distances from an arbitrary reference point (inside or out-
side) to any polygon.

To implement this approach, we first triangulate (i.e., divide 
into triangles) the hexagonal cell with respect to the reference 
points. For calculating Fθx (r), the reference point is inside and at 
the center of the central hexagonal cell. Thus, we triangulate the 
cell into six triangles with respect to the center, as depicted in 
Fig. 2(a). Similarly, for calculating Fθy (r), the reference point is out-
side of the central hexagonal cell. Hence, we triangulate the cell 
into four non-overlapping triangles with respect to one of the ver-
texes of the hexagon, as shown in Fig. 2(b).

Overall, this triangulation and decomposition approach allows 
us to obtain the distance distribution for a given reference point 
and polygon. Once we know the distribution of distances within 
each triangle, we can use probabilistic summation to compute the 
final distance distribution. Specifically, the CDF of the distance dis-
tributions Fθx (r) will be given by a probabilistic sum of the CDF 
of the distance distribution in each of the six triangles. Let F κ

θ (r)
represent the CDF of the distance distribution from a vertex to a 
randomly chosen point within a given triangle (κ ), such as trian-
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gle 2© illustrated in Fig. 2(a). To ascertain the distance distribution 
from the vertex to a randomly selected point within the triangle 
(κ ), we initiate the process by drawing a circle centered at the said 
vertex. In this setup, the radius of the circle, denoted as θx , corre-
sponds directly to the distance between the vertex and the random 
point situated within the triangle (κ ). The probability that this dis-
tance measures less than θx , essentially the CDF (F κ

θ ), is equal to 
the area of the intersection between the circle and triangle (κ ) 
divided by total area of the triangle (κ ), denoted as Aκ [32]. Sub-
sequently, the CDF Fθx (r) for the distance distribution from the 
center to a randomly selected point within the polygon can be de-
termined through probabilistic summation, given as:

Fθx(r) =
�∑

κ=1

Aκ

A
F κ

θ (r), (16)

where � is the number of triangles formed in the polygon with 
BS as the reference. Aκ is the area of the κth triangle, where A is 
the area of the cell. In the case of the hexagon where the triangu-
lation takes place at the center, � is equal to six, which is seen in 
Fig. 2(a).

The CDF of the distance distribution Fθy is similar to Fθx (r)
given in (16), but with one key difference: F κ

θ (r) is the CDF of the 
distance distribution from a point outside of the triangle to a ran-
dom point located in the κth triangle (e.g., triangle 1© in Fig. 2(b)), 
which is provided in [32]. In Fig. 2(b), the reference point (in this 
case, the BS) is situated outside the center cell, the cell gets di-
vided into four triangles with respect to one of its vertex. The CDF 
of the distance distribution Fθy will be given as the probabilistic 
summation of distance distributions for all four triangles in the 
central cell as in (16).

The other distance distribution for UAVs is for the altitude of 
the UAV. We assume a uniform distribution with a CDF of F H (h)

within the limits between 20 m and 120 m.

3.3. Statistical characterization of path loss and received power

Characterization of the path loss as the CDF at a certain altitude 
of hU T is provided in the following due to its dependence on LoS 
probability:

F P L(d) =
∑

z∈{LoS,N LoS}
P z F P L,z(d), (17)

where F P L,LoS(d) and F P L,N LoS(d) are derived as follows:

F P L,LoS(d) = Pr(P LLoS(d3D) ≤ d)

= Pr

(
ηLoS

(√
d2

2D + h2
U T

)aLoS

≤ d

)

= Pr

(
d2D ≤

√
(d/ηLoS)2/aLoS − h2

U T

)

=
�∑

κ=1

θκ

θ
F κ

θ (

√
(d/ηLoS)2/aLoS − h2

U T ),

(18)

where we model the path loss for the LoS condition in (2) as 
P LLoS = ηLoSdaLoS

3D , η is the attenuation constant and a is the path 
loss exponent. Similarly, in case of the NLoS, the distribution for 
the path loss can be calculated as:

F P L,N LoS(d) =
�∑

κ=1

θκ

θ
F κ

θ (

√
(d/ηN LoS)2/aN LoS − h2

U T ), (19)

Let R be the received signal strength at the UAV from a BS which 
can be described as the difference between the transmitted power 
6

(Pt ) and the path loss (P L). Then, the CDF F R (r) of the received 
power is calculated as:

F R(r) = Pr(R ≤ r) = Pr((Pt − P L) ≤ r),

= Pr((Pt − r) ≤ P L),

F R(r) = 1 − F P L(Pt − r).

(20)

The PDF f R(r) of the received power is f R(r) = F ′
R(r)

3.4. Statistical characterization of interference

As provided in (10), the interference to the UAV is due to both 
participating BSs (I1) and non-participating BSs (I2). Both inter-
ference components, rk Pr(hU T , dk) and s j Pr(hU T , d j) given in (11)
and (12) respectively, are products of independent binary variables 
and the continuous received signal strength random variable. The 
independent binary variables are used to model the cooperation 
with the participating BSs and the traffic load in non-participating 
BSs. Let χ denote the discrete binary random variable rk or s j de-
pending on the BS to be either participating or non-participating 
one, and R denote the continuous received signal strength random 
variable (F R(r) is already defined in (20)). Hence, to represent in-
terference to the UAV from a single kth (k ∈ [1, B]) participating 
BS, we define a new random variable I1,k = χ R . The CDF of the 
I1,k will be then as follows:

F I1,k (i) = Pr(χ R ≤ i) = Pr(χ = 1)Pr(χ R ≤ i | χ = 1)

+Pr(χ = 0)Pr(χ R ≤ i | χ = 0),

=
{

pF R(i) + (1 − p), if i > 0,

(1 − p), if i = 0,

(21)

where F R(i) is defined in (20), p is the probability rk being equal 
to 1. F I1,k (i) provides the distribution of interference at the UAV 
from a single participating BS. For the distribution of the inter-
ference from a jth ( j ∈ [B + 1, T ]) non-participating BS, F I2, j , is 
derived in same way as in (21) with final expression as:

F I2, j (i) =
{

qF R(i) + (1 − q), if i > 0,

(1 − q), if i = 0,
(22)

Under given conditions, we can consider the interference from the 
BSs as independent. F I1,k (i) and F I2, j (i) show the individual inter-
ference distribution from a single random BS.

The cumulative distribution of the overall interference at the re-
ceiver is obtained by the convolution of the individual interference 
distributions as follows:

F I (i) = F I1,1(i) � ...F I1,B (i) � F I2,B+1(i) � ...F I2,T (i), (23)

where � is the convolution operator. The PDF f I (i) of the cumula-
tive interference is the calculated as f I (i) = F ′

I (i).

3.5. Statistical characterization of SINR

The received SINR defined in (7) is a function of the received 
power and the cumulative interference. For simplicity of notation, 
we denote the SINR by S , the received power by R , and the cu-
mulative interference by I . The probability distribution of the re-
ceived SINR can be derived using the probability distributions of 
the received power f R(r) and cumulative interference f I (i). For 
tractability, we consider the received power and the cumulative 
interference to be bounded between a minimum and a maximum 
value, i.e., R ∈ [rmin, rmax], and I ∈ [imin, imax].
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Given the value of any two out of the three parameters, S , R , 
and I , the value of the third parameter can be calculated using 
(7). Let the SINR corresponding to received power R and cumu-
lative interference I be denoted by gS(R, I). The received power 
corresponding to the SINR value S and cumulative interference I
is denoted by gR(I, S) and cumulative interference corresponding 
to SINR value S and received power R is denoted by gI (R, S).

Assuming that the received power R and the cumulative inter-
ference I are independent, the largest value of the SINR would be 
achieved when the received power is maximum and the interfer-
ence is minimum and is given as gS (rmax, imin). The lowest value 
of the SINR is achieved when the received power is minimum and 
the interference is maximum and is given as gS (rmin, imax). There-
fore, we can obtain the CDF of the SINR at the UAV by considering 
gS(rmin, imax) ≤ S ≤ gS(rmax, imin). This is calculated as follows:

Pr(S ≤ α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

imax∫
gI (α,rmin)

gR (α,i)∫
rmin

f R(r) f I (i)drdi,

i f gS(rmin, imax) ≤ α ≤ gS(rmin, imin);
imax∫

imin

gR (α,i)∫
rmin

f R(r) f I (i)drdi,

i f gS(rmin, imin) ≤ α ≤ gS(rmax, imax);

1 −
gI (α,imax)∫

imin

rmax∫
gR (α,i)

f R(r) f I (i)drdi,

i f gS(rmax, imax) ≤ α ≤ gS(rmax, imin);

(24)

Since it is also possible to have gS(rmax, imax) < gS(rmin, imin), 
the CDF of the SINR can also be written as follows:

Pr(S ≤ α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

imax∫
gI (α,rmin)

gR (α,i)∫
rmin

f R(r) f I (i)drdi,

i f gS(rmin, imax) ≤ α ≤ gS(rmax, imax);
imax∫

imin

gR (α,i)∫
rmin

f R(r) f I (i)drdi,

i f gS(rmax, imax) ≤ α ≤ gS(rmin, imin);

1 −
gI (α,imax)∫

imin

rmax∫
gR (α,i)

f R(r) f I (i)drdi,

i f gS(rmin, imin) ≤ α ≤ gS(rmax, imin).

(25)

3.6. Operational altitudes for maximum localizability

Based on the previous discussion, it is evident that the local-
izability performance is directly linked to the received SINR at 
the UAV. Additionally, due to the impact of the UAV altitude on 
both the channel gain and the antenna gain, the received SINR 
at the UAV is a non-linear function of the altitude. Therefore, our 
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objective is to determine the relationship between the localizabil-
ity performance in terms of (P B ) and the UAV altitude. We can 
achieve this by formulating an optimization problem that seeks to 
identify the altitude that maximizes the localizability performance 
(P B ) as follows:

max
hU T

∑
i∈T

1(S I N Ri ≥ α) (26)

subject to:

(C1) hU T ≤ hmax,

(C2) hU T ≥ hmin,

where (C1) stands for the maximum allowed altitude for the UAV, 
and (C2) assures that a UAV is moving in the air above a certain 
altitude as per [22]. The objective function in (26) maximizes the 
number of BSs with SINR greater than the threshold α with re-
spect to the altitude of the UAV. The objective function in our 
case depends on the distribution of the SINR at the UAV given 
in Section 3.5. Since the distribution does not have a closed-form 
expression, it is difficult to solve this optimization problem with 
conventional optimization methods. Therefore, we use a discrete 
brute force approach with Monte-Carlo simulations for obtaining 
the dependence of localizability probability on the altitude of the 
UAV. This approach is explained as follows.

We assume that there are UAVs distributed randomly in a plane 
in the center cell at discrete altitudes. We seek to maximize the 
numbers of UAVs which receive an SINR greater than some thresh-
old from at least B number of BSs with respect to the altitude of 
the UAV. Thus, we find the optimal altitude that maximizes the 
localizability of UAVs. Let j denote the location in the center cell 
where the UAV is located, h (hmin ≤ h ≤ hmax) denotes the UAV al-
titude and i (i ∈ T ) denotes considered BS. Next, we present our 
optimization problem whose goal is to determine the altitude of 
each UAV which maximizes the localizability by the network as 
follows:

arg max
hmin≤hU T ≤hmax

(ϕh), (27)

ϕh =
∑

j

b j,h, ∀h (28)

b j,h = 1, if
∑

i

ai, j,h ≥ B, ∀ j,h; (29)

ai, j,h = 1, if (S I N Ri, j,h ≥ α), ∀i, j,h; (30)

where S I N Ri, j,h is the received SINR at UAV j at altitude h from 
BS i. ai, j,h = 1 in (30) means the SINR from the BSs i to the UAV j
at altitude h is above a certain threshold α, b j,h = 1 in (29) means 
that total number of BSs having SINR greater than the threshold 
(α) is at-least B . The ϕh in (28) means the number of the loca-
tion at which the SINR constraint is satisfied for B number of BSs 
at different altitudes. The objective function in (27) gives us the 
UAV altitude hU T which maximizes the total number of locations 
at which the SINR from at least B BSs is greater than the thresh-
old.

Note that there is no guarantee that limited samples of the 
UAVs in (30) capture the distribution of the SINRs. In order to 
solve this problem, we used our analytical calculation and compare 
the simulation results obtained using the approach in (28)-(30) as 
shown in Fig. 3. Since the simulation results and the analytical 
results are overlapping, it shows that our approach captures the 
analytical evaluation.
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Table 3
Parameters for numerical study.

Parameters UMi-AV UMi-AV UMi-AV

Inter-site distances 200 m 500 m 1732 m
BSs antenna height 10 m 25 m 35 m
Carrier frequency 2 GHz 2 GHz 800 MHz

Bandwidth (B w ) 10 MHz
Noise figure (NF) 9 dB
Transmit power 46 dB m
Maximum element gain (gmax

E ) 8 dBi
Number of elements (N) 8
Down-tilt angle (φt ) 102◦
Variance 4.64exp(−0.0066hU T ) (for LoS), 6 dB(NLoS)
Noise Power [dB m] 10 log10(400 · 10−20) + N F + 10 log10(B w ) [33]
4. Simulation results and discussion

We use Monte Carlo simulation and the snapshot model to ana-
lyze the localizability in Matlab. In our simulations, we performed 
100,000 iterations with the target UAV randomly located in the 
center cell to obtain the localizability probability. We adopt the 
3GPP channel model for the UAVs [22] in three different scenar-
ios: UMi-AV, UMa-AV, and RMa-AV. The simulation parameters are 
given in Table 3.

4.1. B-localizability performance

In the case of 3D mobility of cellular-connected UAVs, it is 
hard to obtain an exact SINR distribution due to its dependency 
on air-to-ground channel characteristics with LoS conditions and 
changing shadowing variance with the UAV’s altitude, and coop-
eration between participating and non-participating BSs. The SINR 
distribution provided in Section 3.5 is computationally intensive. 
Hence, to provide the analytical results, we use an approximate 
method. We use (16) to get the distance distribution of the UAV 
in the central cell of the network. The received power and the in-
terference are obtained from (20)-(23), for different locations in 
the central cell. Hence, to have approximate results for the ana-
lytical derivations that we present in Section 3, we use empirical 
CDFs for resulting SINRs. According to these CDFs, we calculate P B
when B = 4, i.e., if the fourth highest SINR value is greater than 
the threshold pre-processing SINR, α, as we outline in (14) and 
(15). For fixed p = 1, q = 1 and B = 4, we obtain the analyti-
cal and simulation results for P B in an urban micro scenario in 
Fig. 3. In the worst case with no coordination, i.e., p = 1, q = 1, 
both participating and non-participating BSs in the network in-
terfere in the localization process. In Fig. 3, P4 is almost one in 
simulation results at SINR thresholds below −12 dB. This is be-
cause a very low threshold constraint at the UAV is achieved easily 
by the localization signals even in worst-case scenarios with lower 
received power for the localization signals. We also observe that 
P4 becomes almost zero for the SINR threshold greater than 0 dB. 
This means that without any gain or interference cancellation, it 
is difficult to achieve the required localizability performance. Since 
the analytical and the simulation results coincide, our result will 
depend on the empirical SINR values obtained by our extensive 
simulations in the following sections.

4.2. B-localizability performance with different number of participating 
BSs

In order to analyze B-localizability with a change in the number 
of participating BSs, we assume a pre-processing SINR threshold of 
−6 dB [14]. We analyze all the three scenarios to observe the B-
localizability for different B values at different altitudes in Fig. 4. 
We observe in the case of the UMi scenario, a B-localizability 
becomes 0.4 when hU T = 60 m and all BSs act as interferers, 
8

Fig. 3. P4 vs. pre-processing SINR threshold α when p = 1, q = 1 for urban micro 
scenarios.

Fig. 4. P B vs. number of participating BSs, B , when p = 1, q = 1 for three different 
scenarios.

i.e., p = 1, q = 1. In general, as we increase the altitude hU T , 
B-localizability decreases except for certain altitudes like around 
hU T = 60 m for the UMi scenario where localizability increases. 
This is because of the antenna radiation pattern at the BS which 
favor certain altitudes. On the other hand, as altitude increases, 
the higher path loss experienced in the channels becomes domi-
nant, and the localizability performance decreases. The same effect 
is observed for the urban macro and rural scenarios. As we move 
from the urban to the rural scenario, the LoS probability increases 
due to fewer obstacles in the rural area and we observe an increase 
in the localizability performance. Another interesting observation 
is that in the case of the UMi scenario, as the number of partici-
pating BSs, B , increases, the B-localizability decreases and tends to 
be zero when B = 8 for hU T = 30 m. Thus, it becomes impossible 
to implement a localization method where the required number of 
participating BSs are eight or more. In the case of the UMa and 
RMa scenarios, we see that the B-localizability for hU T = 60 m 
and B = 8 is higher than in the case of the UMi. Hence with an 
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Fig. 5. Processing gain required for achieving P4 = 0.9 for different altitudes, hU T , 
when p = 1, q = 1 for three different scenarios.

interference mitigation technique, it is possible to implement lo-
calization methods that require a higher number of participating 
BSs.

4.3. Processing gain requirement with the number of participating BSs

In order to gain some insight into design parameters such as 
the processing gain at the target UAV, it is important to observe 
the change in the gain with respect to the altitude of the UAV. 
A sufficient gain provided to the received localization signals can 
achieve an acceptable P B . For achieving P4 = 0.9 with an SINR 
threshold of −6 dB, Fig. 5 shows the variation of the gain require-
ments for different altitudes. We observe that the gain requirement 
does not follow a trend with the altitude of the UAV. This is be-
cause of the antenna gain achieved as a function of the antenna tilt 
in (4) which makes some altitudes favorable for the localization. 
Fig. 5 shows the same analysis for the UMa and RMa scenarios.

We observe that variation in the required gain is small for the 
urban environment as compared to the rural. Since the wireless 
channel has almost the same path loss but a different probability 
of NLoS link conditions in urban areas, the variation in the gain 
is small. Dynamic allocation of gain with altitude at the receiver 
can improve localization performance. Based on the altitude and 
the localization method, the UAV can select the gain to achieve the 
successful participation of the required number of BSs.

4.4. UAV altitude for maximum localizability performance

As explained in Section 3.6, we obtain the dependence of the 
localizability probability for B = 4 on the altitude of the UAV and 
observe how some of the altitudes are more favorable for localiza-
tion in different scenarios. In Fig. 6, we observe the B-localizability 
for B = 4 as a function of UAV altitude hU T for different coordina-
tion levels in three different scenarios. In Fig. 6(a), we consider the 
urban micro scenario, Fig. 6(b), urban macro scenario, and Fig. 6(c), 
the rural scenario with all the non participating BSs interfering 
(q = 1), while we change the coordination among the participat-
ing BSs. We observe for all the scenarios with perfect coordination 
has the best performance in terms of localizability. For the urban 
scenarios in 6(a), the localizability first increases as the UAV moves 
up and then decreases before increasing again. This is because of 
the small inter-site distance and the antenna pattern at the BSs. 
Therefore, we have certain altitudes where the localizability per-
formance is highest as in Fig. 6(a) for hU T = 40 m; Fig. 6(b) for 
hU T = 90 m; and Fig. 6(c) for hU T = 50 m. In the rural scenario, 
we observe that there is an improvement in the localizability per-
formance and maximum localizability is achieved around hU T = 50
for the cases with partial coordination. As the altitude increases, 
localizability performance decreases for all the coordination (p) 
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values. This is because path loss due to the distance plays a major 
role as compared to the antenna beam gain.

Fig. 7 shows the B-localizability for B = 4 as a function of UAV 
altitude hU T for different pre-processing SINRs (α). We consider 
the case where we have full coordination among the participat-
ing BSs for different pre-processing SINR requirements. We observe 
that even with perfect coordination, we do not have the best lo-
calizability performance at all altitudes. We observe for the urban 
scenario in Fig. 7(a), the performance peaks at around hU T = 40 m, 
showing that the tilt in the BS antennas and the resulting radia-
tion pattern make the altitude range around hU T = 40 m favorable 
for the maximum localizability. For the urban macro scenario in 
Fig. 7(b), we observe a very low localizability probability value at 
around hU T = 40 − 50 m. However, as altitude increases beyond 
hU T = 50 m, localizability experiences a notable improvement, 
peaking at approximately hU T = 65 m. Notably, altitudes exceeding 
hU T = 60 meters exhibit an increased potential for favorable local-
izability. This is because of the reduction in the density of obstacles 
at higher altitudes within the urban macro scenario, facilitating 
LoS A2G links with multiple BSs. In this scenario, the dense distri-
bution of BSs, coupled with perfect coordination, leads to reduced 
interference from neighboring BSs. Consequently, SINR improves, 
resulting in enhanced localizability performance. Also, the antenna 
gain compensates for the inherent path loss that arises due to in-
creased distance. In the rural scenario in Fig. 7(c), we do not see 
the effect of the antenna pattern on the localizability performance 
because of the large inter-site distances in rural areas where the 
signal strength is almost the same over the range of the altitudes. 
The results of Fig. 6 and Fig. 7 provide us with insights for obtain-
ing maximum localizability results just by changing the operational 
altitude of the UAV in different scenarios.

4.5. Network coordination and network traffic

To illustrate the impact of interference mitigation through net-
work coordination among the B participating BSs, we change the 
parameter p to vary the level of coordination. This captures the 
coordination among the participating BSs while non-participating 
BSs are transmitting, i.e., q = 1. In Fig. 8a, considering the UMi 
scenario with B = 4 and a predefined pre-processing SINR thresh-
old, the plot demonstrates an ascending trend in P4 as the level 
of coordination (p) intensifies. Heightened coordination, where 
one BS transmits while others remain idle or transmit on other 
channels, leads to elevated B-localizability. The enhancement in 
B-localizability showcases the potential of mitigating interference 
from neighboring BSs through efficient network coordination.

We explore the impact of traffic among the non-participating 
BSs by changing q. This parameter encapsulates varying traf-
fic intensities. Setting the parameter q to 1 implies that non-
participating BSs are catering to users on the same channel, in-
cluding other UAVs. This introduces additional interference from 
these BSs. While q = 0 represents perfect coordination among the 
non-participating BS, resulting in no interference with the target 
UAV. In Fig. 8b, for the same UMi scenario with B = 4, an ascend-
ing trend in P4 is observed as traffic among non-participating BSs 
decreases. However, the impact of the traffic on localizability is 
comparatively less substantial than that achieved through network 
coordination. This result arises from the fact that participating BSs, 
being in closer proximity with the UAV to be localized, exert a 
more pronounced impact on SINR compared to non-participating 
BSs situated at greater distances. Consequently, the effect of non-
participating BSs serving more users in the downlink on SINR and 
localizability is relatively small.

Additionally, we assess the B-localizability performance with 
B = 4 for a UAV in a UMi scenario, as it moves beyond the cel-
lular network’s coverage area i.e., away from all the BSs in the 
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Fig. 6. Localizability probability P4 vs. UAV altitude hU T (m), for different coordination level p, with q = 0.
Fig. 7. Localizability probability P4 vs. UAV altitude hU T (m), for different pre-processing SINR (α), with perfect coordination (q = 0, p = 0).

Fig. 8. P4 vs. pre-processing SINR threshold, α when hU T = 30 m, (a) q = 1, and p
varying from 1 to 0 with a step of 0.2; (a) p = 1, and q varying from 1 to 0 with a 
step of 0.2.

Fig. 9. P4 vs. communication distance from the central BS going away from the 
coverage region of the two-tier cellular network.

two-tier network. The performance results for P4 are illustrated in 
Fig. 9, depicting its variation with the distance from the central BS, 
where the BSs have coverage till the distance equal to 2.5 times 
the ISD. These results are obtained under specific system param-
eters, including a pre-processing SINR threshold of α = −16 dB, 
p = 1, q = 1, and hU T = 40,80,120 m and an ISD = 200 m. At al-
titudes of 40 m and 80 m for the UAV, P4 drops to zero as the 
UAV moves farther away. This is expected since at lower heights, 
the UAV faces NLoS channels from both nearby and distant BSs. 
As the distance grows, the signal quality diminishes, resulting in 
a decrease in SINR. Comparing hU T = 40 m to hU T = 80 m, we 
find better localizability at the lower altitude, supporting our ini-
tial finding that for the UMi scenario, localizability performance 
at hU T = 80 m is very low. At hU T = 120 m, an interesting trend 
emerges: with increasing distance, localizability improves notably. 
This happens because, at higher altitudes, the UAV usually has a 
LoS link with most BSs. While moving away, the interference from 
distant BSs decreases, while the nearest BSs maintain strong signal 
strength due to a clear LoS channel and full power transmission. 
This interference reduction boosts the SINR, enhancing localizabil-
ity.

4.6. BS deployment model and communication frequency

We revisit our assumption that base stations (BSs) are dis-
tributed based on a hexagonal grid model. Our objective is to 
illustrate how this assumption aligns with the localizability out-
comes produced by the Poisson Point Process model to show the 
generalizability of our approach. Fig. 10a effectively contrasts the 
localizability outcomes obtained through these random and hexag-
onal deployment scenarios. This comparison is conducted across 
varying numbers of participating BSs while maintaining the BS 
density and constant parameters such as α = −16 dB, hU T = 40
10
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Fig. 10. Localizability results for an urban micro scenario (a) BS distribution com-
parison, (b) Frequency range impact.

m, and p = q = 0. The variance of shadowing within our chan-
nel model is substantial enough to observe a convergence between 
the hexagonal grid model and the Poisson distribution of BSs. This 
alignment leads to the convergence of results from both models.

In Fig. 10b, we compare the localizability under different fre-
quency ranges for B = 4. The two frequency ranges being com-
pared are fc = 2 GHz, and fc = 28 GHz. The results for the fc = 28
GHz frequency range are obtained using the channel model pro-
vided in [34]. With the perfect coordination in an urban micro 
scenario, i.e., p = 0, q = 0, both participating and non-participating 
BSs in the network do not interfere in the localization process. In 
Fig. 10b, P4 shows a difference for the two frequency ranges as 
the signal at fc = 28 GHz is more susceptible to various losses due 
to NLoS channel, path loss, and atmospheric absorption. Therefore, 
the localizability performance is the worst at higher frequency 
ranges. Nonetheless, a notable advantage stemming from this anal-
ysis is that it suggests the possibility of utilizing lower frequency 
ranges for precise localization while reserving higher frequency 
ranges for more efficient data transmission purposes.

4.7. Model application: insights and limitations

Insights: This localizability analysis represents the initial step 
towards enabling UAV localization within cellular networks. The 
localizability metric serves as a valuable tool for designers to 
measure the ability of the network to localize UAVs and help in 
selecting optimal localization techniques based on environment, 
BS deployment, and UAV altitudes. Our findings demonstrate that 
enhancing localizability performance is achievable through tech-
niques such as processing gain, inter-BS coordination, and strategi-
cally operating UAVs within altitude ranges conducive to favorable 
localizability outcomes across diverse scenarios. For example, we 
can gain valuable insights into the ability of a network, utilizing 
a localization technique reliant on a minimum of four localiza-
tion signals, to accurately locate a UAV flying at an altitude of 80
meters. For such a case in rural settings with sparsely distributed 
BSs, its localizability surpasses 80%, indicating effective localization 
is possible. However, at the same altitude in a densely deployed 
urban micro scenario, the localizability drops to less than 30%, il-
lustrating challenges in accurate UAV localization with the given 
method.

Limitations: Our study does not take into account a specific 
interference avoidance model to accommodate interference coordi-
nation schemes. We simplify the control process of interference by 
coordination through a single parameter. For more specific inter-
ference coordination methods, this parameter needs to be updated. 
However, this simplification effectively captures the influence of 
interference, albeit without encompassing the precise methods of 
interference coordination. Also, in our present model, we employ a 
snapshot approach to calculate localizability. However, there is po-
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tential for enhancing the tracking of a moving UAV’s position by 
incorporating its time series location data. Exploring how correla-
tions within the sequential location data can be leveraged to boost 
localizability performance is a promising avenue for improvement.

5. Conclusion

In this paper, we analyze the B-localizability of cellular-
connected unmanned aerial vehicles (UAVs), which is the proba-
bility of successfully receiving localization signals from at least B
participating base stations (BSs) with a signal to interference plus 
noise ratio (SINR) above a certain threshold. We base our inves-
tigation on the scenarios outlined by 3GPP for cellular-connected 
UAVs. To calculate localizability, we propose an analytical frame-
work that considers both UAV-specific parameters and network-
related parameters. We use Monte-Carlo simulations to study the 
effects of altitude, the number of participating BSs, and coordi-
nation among them on the localizability. We also analyze the 
processing gain requirement for achieving the required localiz-
ability performance. We formulate an optimization problem to 
maximize localizability and find the best operational altitudes in 
different scenarios. Our findings suggest that the ideal altitude 
range for cellular localization is not the same for all BS deploy-
ments. While urban micro scenario with densely deployed BSs 
and perfect coordination show the best localizability performance 
between 30 and 60 meters, urban macro environments have the 
optimal performance above 60 meters. Similarly, the rural scenario 
with sparsely deployed BS and perfect coordination show apprecia-
ble localizability performance at all altitudes. Future work should 
include practical tests to investigate the effects of network and 
UAV-specific parameters as well as UAV mobility on the localiz-
ability performance.
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