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Abstract—While the problem of jointly controlling the pilot-
and-data power in cell-based systems has been extensively studied,
this problem is difficult to solve in cell-free systems due to two
reasons. First, both the large- and small-scale fading are markedly
different between a served user and the multiple serving access
points. Second, due to the user-centric architecture, there is a
need for decentralized algorithms that scale well in the cell-free
environment. In this work, we study the impact of joint pilot-
and-data power control and receive filter design in the uplink
of cell-free systems. The problem is formulated as optimization
tasks considering two different objectives: 1) maximization of the
minimum spectral efficiency (SE) and 2) maximization of the total
SE. Since these problems are non-convex, we resort to successive
convex approximation and geometric programming to obtain a
local optimal centralized solution for benchmarking purposes. We
also propose a decentralized solution based on actor-critic deep
reinforcement learning, in which each user acts as an agent to
locally obtain the best policy relying on minimum information
exchange. Practical signaling aspects are provided for such a de-
centralized solution. Finally, numerical results indicate that the
decentralized solution performs very close to the centralized one
and outperforms state-of-the-art algorithms in terms of minimum
SE and total system SE.

Index Terms—Cell-free, pilot-and-data power control,
successive convex approximation, geometric programming,
deep reinforcement learning.

I. INTRODUCTION

CURRENTLY, the cell-free concept has garnered several
efforts in the industry and academia and is considered
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a promising technology for beyond fifth generation (5G) net-
works. It consists in an architecture in which a large number of
distributed access points (APs), connected to a central process-
ing unit (CPU) via high capacity fronthaul, serve a group of users
in a large service area using the same time/frequency resource.
Hence, it can offer a higher coverage probability compared
to traditional cellular networks and thus improves the service
quality in a given geographical area [1].

In cell-free systems the communication burdens on the fron-
thaul increase significantly, as all signal processing is performed
at the CPU [2]. To overcome this issue, a commonly used
approach consists in performing channel estimation and data
detection at each AP and, next, the data estimates are passed to
the CPU for final decoding. Moreover, the system performance
can be improved by designing the receive filter coefficients at
the CPU by using only the channel statistics [3].

Also, in general, cell-free systems employ uplink pilots for
channel estimation. Ideally, the pilot sequence assigned to a
given user should be mutually orthogonal to other users’ pilot
sequences. However, this is not always possible, especially when
the coherence interval is short and/or the number of users is
large [4]. Then, non-orthogonal pilot sequences have to be
employed by the users, which causes pilot contamination and
significantly degrades the system performance [5]. Also, due to
pilot contamination, improving the pilot signal-to-interference-
plus-noise ratio (SINR) for one user may cause pilot SINR
degradation for users using the same pilot. Moreover, the trade-
off between pilot-and-data power allocation in cell-free systems
is much more complicated than in cell-based systems because
each serving AP must estimate its wireless channel to its served
users based on the same uplink pilot signal, and, in general,
a set of users is served by a different set of APs. Thus, as
highlighted in [6], further studies on joint pilot-and-data power
control (JPDPC) in cell-free systems that quantify the inher-
ent trade-off between pilot-and-data power as well as between
spectral efficiency and fairness are needed.

Machine learning has made great strides in several areas,
including wireless communications [7]. Specifically, deep re-
inforcement learning (DRL) was shown to be a promising and
powerful technique for improving the performance of wireless
communications. Indeed, DRL is reward-based, which allows
obtaining solutions for convex and non-convex problems with-
out training data sets. In addition, a small number of simple
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operations are needed to obtain an output, thus, in general, DRL
has low computational complexity. Another advantage is its
robustness to incomplete and/or imperfect information [8], [9].
Thus, multiple agents can act on the environment and locally
obtain the best optimal policy with minimum or without infor-
mation exchange among each other. In other words, it allows the
development of decentralized solutions with reduced signaling
overhead.

A. Related Works and Main Contributions

The impact of JPDPC has been largely studied in the uplink
of traditional cellular systems. In [10] the power minimization
problem subject to target SINR constraints for a multi-cell
system was studied, where a JPDPC scheme using geometric
programming (GP) was proposed. In [11] the weighted max-min
fairness and weighted sum spectral efficiency (SE) problems
were studied in the uplink of a single-cell system using maxi-
mum ratio combining (MRC) and zero-forcing (ZF) detection.
Moreover, the authors showed that a JPDPC is specially impor-
tant for cell-edge users. On the other hand, in [12] the authors
derived a closed-form expression for the mean squared error
(MSE) of the uplink received data symbols in a multi-cell system
considering pilot contamination and proposed two decentralized
solutions based on non-cooperative game to minimize the sum
MSE.

Initial studies on cell-free systems, such as those in [5], [13],
[14], focused only on the data power control by assuming that the
pilot signals are transmitted using a fixed power. However, such
solutions incur in poor channel estimations since users in worse
channel conditions can be affected by users with better channel
conditions. Moreover, reusing pilot sequences over the coverage
area causes pilot contamination. Thus, the system performance
can be significantly degraded [5]. To deal with this issue, the
authors in [15] proposed a pilot power control scheme to mini-
mize the maximum channel estimation error among the users and
used the data power allocation scheme proposed in [5] to solve a
max-min fairness problem. The authors in that paper, however,
did not consider JPDPC. Such a problem was considered in [16],
where the max-min fairness problem was formulated subject
to an energy budget per coherence interval. The authors also
proposed a solution based on GP. However, the APs are equipped
with a single antenna and the pilot contamination effects were
ignored. Moreover, all APs are used to serve all users, which is
shown to be suboptimal in [14]. The impact of JPDPC in cell-free
systems with user-centric clustering, pilot contamination and
multi-antenna AP was considered in [17] but only centralized
solutions were proposed.

Furthermore, in cell-free systems, the system performance
can be improved by optimizing the receive filter coefficients
at the CPU using only channel statistics. In [18] an asymptotic
approximation for the SINR of the minimum mean squared error
(MMSE) receiver was derived as a function of large scale fading
coefficients only. Moreover, the authors derived the receive filter
coefficients that maximize the SINR of each user and used the
bisection method for solving the max-min fairness power alloca-
tion problem. In [19] the authors investigated the max-min fair-
ness problem and proposed an alternating optimization method

in which the receive filter coefficients design was formulated as a
generalized eigenvalue problem, and the power control problem
was solved using GP. Due to the high-complexity of the GP
method, the authors in [20] applied a smoothing technique in
combination with an accelerated projected gradient method to
solve the power allocation problem. Although these works have
considered the receive filter coefficients design, the JPDPC was
ignored by them. Indeed, as far as we know there is no work in
the literature considering JPDPC and receive filter coefficients
design in cell-free systems.

Recently, some works have focused on machine learning for
power control in cell-free systems. In [21] a data power control
based on supervised leaning was proposed for solving the max-
min fairness and sum SE problems. However, supervised leaning
requires a large training data set which is not always available. To
deal with this issue, in [22] and [23] unsupervised learning was
proposed, but they also focused on data power control and only
centralized solutions were provided. DRL was also considered
by other works [24], [25], [26], however, the JPDPC and receive
filter coefficients design was ignored.

It is intuitively clear that works on DRL, and especially on
distributed DRL, still need to be exploited in cell-free systems.
Therefore, in this paper, we investigate the impact of JPDPC
and receive filter coefficients design in cell-free systems and,
motivated by the benefits of DRL, we propose a decentralized
solution based on multiple agent DRL. The main contributions
of this paper can be summarized as follows:

1) Investigation of the JPDPC and receive filter coefficients
design addressing two different objectives: i) max-min
fairness and ii) maximization of the sum SE, in which
we consider pilot contamination and multi-antenna APs.
Moreover, we also assume a user-centric approach in
which only a subset of the APs simultaneously serve each
user;

2) To handling the non-convexity of the formulated optimiza-
tion problem, we develop a centralized solution based
on successive convex approximation (SCA) and GP to
find local optimal solutions of the original problems for
benchmarking purposes;

3) Although joint pilot-and-data power control is decisive
for the system-wide spectral and energy efficiency, its
complexity in cell-free systems is prohibitive in practice.
Therefore, in this paper we seek DRL-based approaches
that can be implemented by realistic signaling protocols. In
this context, a novel decentralized solution based on actor-
critic DRL, where we also present a signaling scheme for
deployments in practical cell-free systems;

4) Performance evaluation by means of simulations, where
we compare the proposed solutions with state-of-the-art
algorithms considering different scenarios and show that
the proposed decentralized solution performs very close
to the centralized one, outperforming the state-of-the-art
algorithms in terms of minimum spectral efficiency and
total system throughput.

Organization: The remainder of the paper is organized as
follows. Section II introduces the system model. Then, the
JPDPC and receive filter design problems are presented in
Section III. The proposed centralized and decentralized
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solutions are described in Sections IV and V, respectively,
with the latter also discussing the involved signaling aspects.
Section VI provides the numerical results along with discussions
and, finally, Section VII highlights the main conclusions, as well
as perspectives for future works.

Notation: Throughout the paper, matrices and vectors are
presented by boldface upper and lower case letters, respectively.
XT , XH and X−1 stand, respectively, for transpose, Hermitian
and inverse of a matrix X. {xi}∀i denotes the set of elements
xi for the values of i denoted by the subscript expression. I
is the identity matrix. Expected value of a random variable is
denoted by E[·]. In addition, |X| denotes the cardinality of set
X, x ∼ CN(0, a) represents a zero-mean circularly symmetric
complex Gaussian random variable with variance a and a ran-
dom variable x that follows the Beta distributions with shape
parameters a and b is given by x ∼ Beta(a, b).

II. SYSTEM MODEL

We consider the uplink of a cell-free system consisting of M
APs, each AP equipped withN antennas, andK single-antenna
users. We define M and K as the sets of APs and users,
respectively. Furthermore, all APs are connected via fronthaul
links to a CPU. This model can capture that each user k is
served only by a subset of APs, denoted as Mk. We remark
that clustering and user association algorithms (which set of APs
serve each user) are out of the scope of this paper. Such clustering
algorithms have been proposed in the literature (e.g. [25], [27]),
and the proposed power control schemes work with any of such
clustering algorithm.

The channel vector gm,k ∈ CN×1 between user k and AP m
is composed by the large-scale fading βm,k and the small-scale
fading vector hm,k ∈ CN×1: gm,k =

√
βm,khm,k. Note that

hm,k ∼ CN(0, IN ), ∀(m, k) are independent and identically
distributed random variables [5]. We assume that only the large
scale fading coefficients, {βm,k}∀(m,k), are known at the CPU,
as they vary slowly and can be easily estimated. Indeed, the large
scale coefficients are kept constant during T coherence intervals
or time slots. Also, τc denotes the length of the coherence interval
(in samples), which is equal to the product of the coherence time
and the coherence bandwidth.

A. Pilot Transmission and Channel Estimation

We assume that τp mutually orthogonal pilot sequences√
τpϕ ∈ Cτp×1 are used for channel estimation with ‖ϕ‖2 = 1.

Thus, let
√
τp p

(p)
k ϕk be the pilot sequence assigned to userk, for

k = 1, . . . , K, and p(p)
k is the transmit power of the pilot symbol

for user k. The received pilot signal matrix Yp
m ∈ CN×τp at the

AP m is given by

Yp
m =

K∑
k=1

√
τpp

(p)
k gm,kϕ

H
k +Np

m, (1)

where Np
m ∈ CN×τp is the receiver noise with independent

CN(0, σ2) entries, in which σ2 is the noise power. After obtain-
ing the projection of Yp

m onto ϕk, given by y̌p
m,k = Yp

mϕk, the

minimum mean squared error estimate of {gm,k}∀(m,k) is [15]

ĝm,k =

√
τpp

(p)
k βm,kψ

−1
m,ky̌

p
m,k, (2)

where

ψm,k =
K∑
j=1

τpp
(p)
j βm,j |ϕH

j ϕk|2 + σ2. (3)

Note that ψm,kIN is the correlation matrix of y̌p
m,k. The esti-

mated channel ĝm,k and the channel estimation error g̃m.k =
gm,k − ĝm,k are independent vectors distributed as ĝm,k ∼
CN(0, γm,kIN ) and g̃m,k ∼ CN(0, cm,kIN ), where γm,k =

τpp
(p)
k β2

m,kψ
−1
m,k and cm,k = βm,k − γm,k.

B. Uplink Data Transmission and Achievable SE

We assume that τd = τc − τp symbols are used for uplink
transmission. In addition, all K users simultaneously send their
data on the same time-frequency resource. Thus, the received
signal at the m-th AP yd

m ∈ CN×1 is modeled as

yd
m =

K∑
k=1

√
p
(d)
k gm,kxk + nd

m , (4)

where xk ∈ C, with E{|xk|2} = 1, is the transmitted data
symbol by user k, nd

m ∼ CN(0, σ2IN ) is the noise on the
received data signal, and pd

k is the transmit power of the data
symbol.

In this work, each AP is able to perform local data detections
that are passed to the CPU for final decoding. By employing
MRC detection, the local estimate of xk at AP m is given by

x̃m,k = ĝH
m,ky

d
m =

K∑
j=1

√
p
(d)
j ĝH

m,kgm,jxj + ĝH
m,kn

d
m. (5)

Once the local estimates are sent to the CPU, they are
multiplied by a receive filter coefficient ωm,k, i.e., x̂k =∑

m∈Mk
ωm,kx̃m,k, to obtain

x̂k =
∑

m∈Mk

√
p
(d)
k ωm,kĝ

H
m,kgm,kxk

+
∑

m∈Mk

ωm,kĝ
H
m,kn

d
m

+
K∑
j=1
j �=k

∑
m∈Mk

√
p
(d)
j ωm,kĝ

H
m,kgm,jxj . (6)

Note that the receive filter coefficients can be optimized
to maximize the SE using only channel statistics since the
CPU does not have knowledge of the channel estimates. More-
over, the achievable SE can be computed using the following
lemma.1

1It is worth mentioning that the exact ergodic capacity of uplink multiuser
channels with channel uncertainty is unknown and only a lower bound is
provided here.
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Lemma 1 (See [19], Theorem 1): The closed form expression
for the achievable SE of user k using MRC is given by:

Rk = (τd/τc) log2 (1 +Υk) , (7)

where Υk is the SINR of user k given (8), shown at the bottom
of this page.

III. PROBLEM FORMULATION

In this work, we study the maximization of a given utility
function U(R1, . . . , RK) subject to maximum energy budget
constraints, for which the general problem is modeled as follows

maximize
p
(p)
k ,p

(d)
k ,ωm,k

U(R1, . . . , RK) (9a)

subject to τpp
(p)
k + τdp

(d)
k ≤ Emax, ∀k, (9b)∑

m∈Mk

|ωm,k|2 = 1, ∀k, (9c)

p
(p)
k ≥ 0, p(d)

k ≥ 0, ∀k, (9d)

where the pilot and data powers, as well as the receive filter
coefficients, are the optimization variables, U(·) can be any
function that is monotonically increasing in every argument and
Emax is the maximum energy budget.

We consider two objective functions: (1) maximization of the
minimum SE (max-min SE) and (2) maximization of the sum
SE (max-sum SE). The max-min SE and max-sum SE problems
are two extreme cases, where the max-min SE is totally fair
and the max-sum SE ignores fairness to achieve a high system
throughput. Next, each problem is described in detail.

A. Maximization of the Minimum SE

The main goal of the max-min SE consists in providing a
fair SE for all users. Moreover, this problem corresponds to the
case in which the utility function is given as U(R1, . . . , RK) =
mink Rk. Thus, the max-min SE problem can be written as

maximize
pp
k,p

d
k,ωm,k

min
k
Rk (10a)

subject to (9b), (9c) and (9d). (10b)

Note that the coefficient τd/τc is equal for all users and log2(1 +
x) is a monotonically increasing function. Thus, we can ignore
the coefficient τd/τc and remove the logarithm from the objective
function. Using the epigraph form [28], we can rewrite the max-
min SE problem as

maximize
pp
k,p

d
k,ωm,k,ε

ε (11a)

subject to ε ≤ Υk, ∀k, (11b)

(9b), (9c) and (9d). (11c)

B. Maximization of the Sum SE

The max-sum SE aims at maximizing the total system
throughput. Thus, the utility function chosen for this case is
U(R1, . . . , RK) =

∑K
k=1 Rk and the sum SE problem can be

formulated as

maximize
pp
k,p

d
k,ωm,k

K∑
k=1

Rk (12a)

subject to (9b), (9c) and (9d). (12b)

The coefficient τd/τc can also be ignored. Moreover, us-
ing the property of logarithm functions in which

∑
∀x log x =

log(
∏
∀x x) and log(

∏
∀x (1 + x)) is a monotonically increasing

function, the max-sum SE problem can be written, in its epigraph
form, as

maximize
pp
k,p

d
k,ωm,k,εk

K∏
k=1

εk (13a)

subject to εk ≤ (1 +Υk) , ∀k, (13b)

(9b), (9c) and (9d). (13c)

IV. PROPOSED CENTRALIZED SOLUTION BASED ON SCA
AND GP

Problem (11) is non-convex [16] and it is well-known that
the power control to maximize the sum SE (i.e., problem (13))
is non-polynomial time (NP)-hard, even under perfect channel
knowledge [29]. Fortunately, problems (11) and (13) can be
approximated as GP problems. For that, after a series of mathe-
matical manipulations, it can be obtained (14), (15), (16), (17).

∑
m∈Mk

ωm,kγm,k =

∑
m∈Mk

ωm,kτpp
(p)
k β2

m,k

∏
q �=m

ψq,k

∏
m∈Mk

ψm,k
=
θk
λk
,

(14)

∑
m∈Mk

|ωm,k|2γm,k=

∑
m∈Mk

|ωm,k|2τpp(p)k β2
m,k

∏
q �=m

ψq,k

∏
m∈Mk

ψm,k
=
ϑk
λk
,

(15)∑
m∈Mk

|ωm,k|2γm,kβm,j

Υk =
Np

(d)
k

∣∣∑
m∈Mk

ωm,kγm,k

∣∣2

N
∑K

j=1
j �=k

p
(d)
j

∣∣∣∣∣
∑

m∈Mk
ωm,kγm,k

√
p
(p)
j βm,j√

p
(p)
k βm,k

ϕH
j ϕk

∣∣∣∣∣
2

+
∑K

j=1 p
(d)
j

∑
m∈Mk
|ωm,k|2γm,kβm,j + σ2

∑
m∈Mk
|ωm,k|2γm,k

(8)
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=

∑
m∈Mk

|ωm,k|2τpp(p)k β2
m,kβm,j

∏
q �=m

ψq,k

∏
m∈Mk

ψm,k
=
ξk,j
λk

, (16)

∑
m∈Mk

ωm,kγm,k

√√√√p
(p)
j

p
(p)
k

βm,j

βm,k

=

∑
m∈Mk

ωm,kτpp
(p)
k β2

m,k

√
p
(p)
j βm,j

∏
q �=m

(√
p
(p)
k βq,kψq,k

)

∏
m∈Mk

√
p
(p)
k βm,k

∏
m∈Mk

ψm,k

=
ηk,j
χkλk

. (17)

Then, the SINR expression in (8), can be rewritten as

Υk=
Np

(d)
k |θkχk|2

N
K∑
j=1
j �=k

p
(d)
j

∣∣ηk,jϕH
j ϕk

∣∣2+ K∑
k=1

p
(d)
j ξk,jλkχ2

k+σ
2ϑkλkχ2

k

� qk(x)

wk(x)
. (18)

Note that qk(x) and wk(x) are posynomial functions and
x is composed by {θk, λk, ϑk, ξk,j , χk, ηk,j , p

(d)
k }∀k,j . Thus,

problems (11) and (13) can be written as a signomial geometric
programming (SGP) problem as follows

minimize
x,ς

f0(ς) (19a)

subject to fk(x, ς) ≤ 1, ∀k, (19b)

(9b), (9c) and (9d). (19c)

where ς = f0(ς) = ε−1 and fk(x, ς) =
wk(x)ς
qk(x)

for problem

(11), whereas ς = εk, f0(ς) = (
∏
∀k εk)

−1 and fk(x, ς) =
wk(x)ς

qk(x)+wk(x)
for problem (13). However, the global optimal solu-

tion of such a problem is computationally difficult to be obtained.
Therefore, to achieve a practical solution while preserving an
efficient performance, we resort to an approximation approach.

Note that the difficulties lie on constraints (9c) and (19b).
Indeed, (9c) are generalized posynomial equality constraints and
(19b) are not valid posynomial inequality constraints, thus, the
problem is very difficult to solve, at least globally [30], [31]. To
deal with this issue, we relax constraint (9c) and resort to the
SCA approach in which, at each iteration l, we approximate the
denominator of fk(x, ς) (denoted as zk(x)) with a monomial
z̃
(l)
k , but leaving the numerator as a posynomial. This can be

efficiently done using the following lemma:
Lemma 2 (See [31], Lemma 1): For any posynomial function

zk(x) =
∑
∀i μi(x), it holds for any αi that

zk(x) ≥ z̃k(x) =
∏
∀i

(
μi(x)

αi

)αi

, (20)

where μi(x) is the i-th monomial of zk(x). In addition, if αi =
μi(x

∗)
zk(x∗)

, ˜∀i, for any fixed positive x∗, then z̃k(x∗) = zk(x
∗), and

z̃k(x
∗) is the best local monomial approximation to zk(x∗) near

x∗ in the sense of first order Taylor approximation.
Relying on Lemma 2, we can now prove the following propo-

sition, which will be instrumental in the sequel.
Proposition 1: Problem (19) can be presented in the l-th

iteration in the form of a GP problem and it is proven that this
relaxation is tight

minimize
x,ς

f0(ς) (21a)

subjectto f̃k(x, ς) ≤ 1, ∀k, (21b)∑
m∈Mk

(ωm,k)
2 ≤ 1, ∀k, (21c)

(9b), (21d)

where f̃k(x, ς) =
wk(x)ς
z̃k(x)

.
Proof: Note that constraints (21c) and (21d) are now posyn-

omial upper bound inequality constraints and by using Lemma
(2), we approximate the posynomial function zk(x) with a
monomial function z̃k(x), then a lower bound on f(x) becomes
an upper bound on a monomial, which is allowed in the standard
form of GP. In addition, maximizing a monomial is equivalent
to minimizing its reciprocal, which is another monomial.

Furthermore, observe that f0(ς) and fk(x, ς) are monoton-
ically decreasing in ωm,k, i.e., if we increase ωm,k (holding
all other variables constant), fk(x, ς) decreases or remain con-
stant, and the generalized posynomial function

∑K
k=1(ωm,k)

2

is monotonically and strictly increasing in ωm,k, i.e., if we
increaseωm,k (holding all other variables constant), the function∑K

k=1(ωm,k)
2 increases. Then, as shown in [30, Section 7.4], the

GP problem in Proposition 1 is a tight approximation of the orig-
inal SGP problem, i.e., the solution of the relaxed problem (21)
is equivalent to the solution of the original problem (19), which
completes the proof. �

Now, problem (21)2 can be efficiently solved by using a
standard solver, such as MOSEK [32] and CVXPY [33]. Fur-
thermore, the proposed solution is an iterative process in which

α
(l)
i =

μi

(
x(l−1)

)
zk (xl−1)

, (22)

where x(l−1) is the solution from the previous iteration. The
complete SCA algorithm can be seen in Algorithm 1.

It is worth mentioning that the global optimality of the solution
achieved by Algorithm 1 cannot be guaranteed, which occurs
due to the iterative linear approximation procedure employed
by the SCA method [30], [34], [35]. However, we can obtain a
Karush-Kuhn-Tucker (KKT) point of problem (11) by satisfying
the conditions from [34], given in Lemma 3. Furthermore, due to
the positiveness constraints imposed by GP, none of the users are
assigned zero power, even though some users might be assigned
with powers very close to zero. Then, when plotting the rate of

2Note that in the standard GP problem form, the positiveness constraints of
the power variables are implicitly considered, as shown in [30, Section 2.2]. This
is the reason why we do not explicitly include them when writing the standard
GP problem.
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Algorithm 1: Centralized Solution Based On SCA And GP.

1: Initialize x(0);
2: Set l = 1
3: repeat
4: Compute α(l)

i , ∀i using (22);
5: Approximate the SINR constraints using Lemma 2;
6: Solve the l-th approximated problem (21) to obtain

x(l);
7: l← l + 1;
8: until Convergence has been reached or l > Lmax.

those users in the results, it might seem that their rate is zero,
but they are actually just very close to zero. Nevertheless, it
is also worth highlighting that we consider the pilot-and-data
power allocation of a certain number of subcarriers (e.g., 12
subcarriers as in a physical resource block) over a coherence time
interval. Therefore, in practice, in long term evolution (LTE) or
new radio (NR) systems [36], [37], [38], if the rate of a given
user happens to be close to zero for the considered subcarriers
over a coherence time interval, that user can still be assigned
with some rate in other subcarriers on the same coherence time
interval.

Lemma 3: By constructing a family of functions satisfying
the following properties:

1) f(x) ≤ f (l)(x), ∀x in the feasible set,
2) f(x(l−1)) ≤ f (l)(x(l−1))
3) ∇f(x(l−1)) = f (l)(x(l−1)),

and optimizing the problem by replacing f(x)with f (l)(x) in the
l-th iteration, if the series of solutions converge, then it converges
to a KKT point of the original problem.

Proof: It follows from [34] and is, therefore, omitted. �
Proposition 2: Algorithm 1 converges and the approx-

imation f (l)(x) = wk(x)

z̃
(l)
k (x)

satisfies the three conditions in

Lemma (3). Thus, Algorithm 1 converges to a KKT point of
problem (11).

Proof: As shown in [34], we have that either the solution
of the SCA subproblem is a solution of the original problem
or the objective is monotonically improved. Since the objective
function is bounded by the power constraints, we can claim the
convergence of Algorithm 1. Moreover, from Lemma 3 we have
that the conditions (1) and (2) are satisfied since zk(x) > z̃k(x)
and z̃k(x∗) = zk(x

∗). Finally, the condition (3) can be verified
by taking the derivatives of zk(x) and z̃k(x) with respect to x.
This completes the proof. �

V. PROPOSED DECENTRALIZED SOLUTION BASED ON

MULTI-AGENT DRL

As shown in the previous section, we can use GP to solve
problems (10) and (12). However, GP requires very high
complexity compared to other standard convex problems.
Hence, the method presented in Section IV may not be suitable
to large scale problems [20]. In this context, we propose a decen-
tralized solution for problems (10) and (12) based on multi-agent
DRL. In particular we focus on the actor-critic method.

A. An Overview of the Actor-Critic Method

DRL approaches are characterized by one or more agents
interacting with the surrounding environment in order to learn
an optimal policy. The learning is done by trial and error, where
the agent gets a reward for each taken action [39]. Let S be a set
of possible states, A be a set of actions, π(a|s) be the policy,
which can be either deterministic or stochastic,3 and vπ(s) be the
state-value function denoted as the expected return when starting
in s and following π thereafter. The actor-critic method aims to
learn approximations to both policy, π(a|s,Θ) and state-value
function, vπ(s,Ω), where Θ and Ω are the neural network (NN)
parameters of π(a|s) and vπ(s), respectively. Thus, the agent
is composed by two parts: the actor and the critic. The actor
is responsible to generate actions according to the observed
environment state by exploring the policy. The critic, on the other
hand, has as role to estimate the state-value function besides
evaluating and criticizing the current policy by processing the
rewards received from the environment. Moreover, the critic
updates the parameters of vπ(s,Ω) and, next, the actor updates
the policy distribution (i.e., the parameters of π(a|s,Θ)) in the
direction suggested by the critic.

Therefore, assuming discrete time steps, iteratively, the agent
observes, at time t, the current state st ∈ S from the environ-
ment. Then, the actor part selects an action at ∈ A based on
the policy π(a(t)|s(t),Θ). Next, the environment moves to state
s(t+1) ∈ S and the agent gets a reward r(t), which characterizes
its benefit from taking action a(t) at state s(t). Once the action
is taken and the feedback from the environment is obtained, the
critic computes the temporal difference (TD) error, as follows

δ(t) = r(t) + ζv(s(t+1),Ω)− v(s(t),Ω), (23)

where 0 ≤ ζ ≤ 1 is the discount rate, and updates the parameters
of vπ(s,Ω) by minimizing the least squares temporal difference,
i.e., by minimizing the loss function

Lv(Ω
(t)) =

(
δ(t)

)2
. (24)

After that, the actor updates the parameters of π(a|s,Θ) using
the policy gradient [39], [40] with the TD error. In other words,
we must minimize the following loss function

Lπ(Θ) = − log
(
π
(
a(t)|s(t),Θ(t)

))
δ(t). (25)

Note that (24) and (25) can be minimized by employing the
gradient descent or similar. Finally, this process will be repeated
until the optimal policy, π∗, is obtained.

B. Proposed Multi-Agent DRL Solution

In this section, we present a multi-agent DRL-based frame-
work to solve problems (10) and (12). Differently from the
solution presented in Section IV, we focus on a decentralized
solution. Then, we assume that each user is an agent, i.e., there
is a total of K agents in the system so that the actions are taken
distributedly. Each agentk is composed by two NNsπk(s|a,Θk)

3In this paper, we assume a stochastic policy, thus, π(a|s) is denoted as a
probability distribution of taking an action a given a state s.
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(actor) and vπ,k(s,Ωk) (critic) used to estimate the policy and
state-value function, respectively.

We also assume that the agents are responsible for computing
the power values, while the CPU computes the values of the
receive coefficients, i.e., ωm,k for all k ∈ K and m ∈Mk.
The motivation is to reduce the complexity at the user side
and the signaling overhead. In addition, assuming fixed power
values, it is possible to compute the receive filter coefficients,
{ωm,k}∀m,k, that maximize the effective SINR in (8) for each
user k using the following corollary:4

Corollary 1: The receive filter coefficients that maximize the
effective SINR in (8) of user k are

ωk=

(
N

∑K
j=1
j �=k

p
(d)
j νk,jν

H
k,j+

∑K
j=1 p

(d)
j Dk,j+Ck

)−1

νk,k∥∥∥∥∥
(
N

∑K
j=1
j �=k

p
(d)
j νk,jνH

k,j+
∑K

j=1 p
(d)
j Dk,j+Ck

)−1

νk,k

∥∥∥∥∥
,

(26)

where ωk = [ω1,k, . . . , ω|Mk |,k]
T,νk,j = [γ1,k, . . . , γ|Mk |,k]

T,
Ck = diag([γ1,k, . . . , γ|Mk |,k]), Dk,j = diag([γ1,kβ1,j , . . . ,
γ|Mk |,kβ|Mk |,j ]) and

νk,j =

⎡
⎣γ1,k

√
p
(p)
j β1,j√

p
(p)
k β1,k

, . . . ,
γ|Mk |,k

√
p
(p)
j β1,j√

p
(p)
k β1,k

⎤
⎦
T ∣∣ϕH

j ϕk

∣∣2 .

Proof: Based on [19], [20] and by assuming fixed power
allocation, the receiver coefficient design can be formulated as
a generalized eigenvalue problem, for which, according to [41],
the solution is given by (26). �

During Te ≤ T time slots, denoted as exploration phase,
the actions are taken while the NN’ parameters are updated.
Obviously, the initial actions (or the initial power allocations)
may not be the best possible solutions since the best policy
is not still learned. However, the proposed method is able to
quickly learn to take good actions and to improve the system
performance. Moreover, once the exploration phase is finalized,
the updates of the NNs’ parameters stop and the best power
allocation found so far can be employed in the next time slots
until a new exploration phase is required.5

That said, we define s(t)k ∈ S as the state of agent k at time

slot t, which is composed by the estimated powers p̃(p)k and p̃(d)k

computed by the actor based on the action taken in the previous
time slot, the estimated SE achieved by user k in the previous
time slot, R̃(t−1)

k and the reward obtained in the previous time

4By using the closed-form expression in (26), the alternating optimization
method could be employed in the centralized solution based on SCA and GP, such
as was done in [19]. In fact, using such an approach would reduce the number of
variables of the proposed optimization-based solution compared to the case in
which we jointly optimize the linear receiver filters and pilot-and-data powers.
However, it was not possible to solve the problem of joint pilot-and-data power
allocation for large scale cell-free systems even for fixed linear receiver filters,
as shown in [17]. Moreover, the centralized optimization problems are mainly
used for benchmarking purposes in comparison to the DRL-based solutions.
Reducing the complexity of the centralized solutions is out of the scope of this
paper and left to future works.

5A new exploration phase can be required when the large-scale fading
coefficients change or the system performance drops below a certain threshold.

slot, r(t−1). In addition, we assume that each agent has the
knowledge of the estimated power values of some interfering
users. However, to avoid excessive overhead, the number of
interfering users is limited to the number of users using the
same pilot sequence of user k. Thus, the estimated powers of the
interfering users are given by p̃(p)j and p̃(d)j , where |ϕH

j ϕk|2 = 1.
We define those powers as estimated powers because, as we
will see later, these powers may not be used for pilot and data
transmissions. Note that R̃(t−1)

k is computed using (26) and

{p̃(p)k , p̃
(d)
k }∀k obtained in the previous time slot. Therefore, let

p
(t−1)
k be a vector composed by all estimated powers at time slot
t− 1 known by agent k, including its own estimated powers.
Then, the state sk is given by

s
(t)
k = {p(t−1)

k , R̃
(t−1)
k , r(t−1)}. (27)

After observing the state, each agent k selects an action a(t)k ∈A based on policy πk(a(t)|s(t),Θk). In this paper, the action
consists in selecting the fraction of energy allocated to pilots and
data, as well as the fraction of saved energy. Thus, we define
φk = [φ

(p)
k , φ

(d)
k , φ

(s)
k ] as a vector in which φ(p)

k , φ
(d)
k and φ(s)

k

are the fraction of allocated energy to pilots, data and saved
energy, respectively. Hence, the action of agent k is given by
φk. The reason for selecting the fraction of saved energy is that
allocating the full energy may not be optimal [17]. For instance,
to maximize the minimum SE, the users (mainly those with
better channel conditions) must save energy to minimize the
interference to users with worse channel conditions. Moreover,
it is worth mentioning that using the fraction of saved energy is
also a way to generalize the proposed solution for those scenarios
in which energy consumption is critical. In fact, a simple way to
try to achieve energy-efficient solutions would be to change the
reward function. However, energy-efficient solutions are out of
the scope of this paper and left for future works.

Furthermore, in order to obtain continuous actions, we as-
sume a stochastic policy in which we learn statistics of a given
distribution from which the actions are obtained. In general,
previous works have assumed the Gaussian policy. However,
the Gaussian policy can be problematic when the actions have
a limited range, which is our case. Indeed, the Gaussian policy
has an infinite support, i.e., even with a small variance value,
the actions sampled from the Gaussian distribution can deviate
a lot from the mean, which introduces a bias and affects the
learning process. To overcome this issue, we use the Beta policy,
which has a [0, 1] support. Moreover, the authors in [42] showed
that the Beta policy is bias-free and provides significantly faster
convergence and higher scores than the Gaussian policy. Then,
we have that

πk(a|s,Θk) =
Γ(Λ(s,Θk) +B(s,Θk))

Γ(Λ(s,Θk))Γ(B(s,Θk))

× aΛ(s,Θk)−1(1− a)B(s,Θk)−1 , (28)

whereΓ(x) is the gamma function andΛ(s,Θk) andBk(s,Θk)
are the shape parameters of user k, which we must approximate.
As shown before, the action consists in a vector containing the
fraction of allocated energy to pilots, data and saved energy,
thus, we must approximate the shape parameters for each of the
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fractions. Therefore, we define Λ(p)(s,Θk) and B(p)(s,Θk),
Λ(d)(s,Θk) and B(d)(s,Θk) and Λ(s)(s,Θk) and B(s)(s,Θk),
as the shape parameters to the fraction of allocated energy to
pilots, data and saved energy, respectively, given a state s. Then,
we can obtain the values of φ(p)

k , φ(d)
k and φ(s)

k from the Beta
distribution as follows

φ
(p)
k ∼ Beta(Λ(p)(s(t),Θk), B

(p)(s(t),Θk)) , (29)

φ
(d)
k ∼ Beta(Λ(d)(s(t),Θk), B

(d)(s(t),Θk)) , (30)

φ
(s)
k ∼ Beta(Λ(s)(s(t),Θk), B(s)(s(t),Θk)). (31)

Note that the energy budget constraints can be violated since the
sum of the fractions can be higher than 1. This can be easy solved
by normalizing φk, i.e., dividing φk by its norm. After that, the
estimated powers p̃(p)

k and p̃(d)
k can be computed as follows

p̃
(p)
k = φ

(p)
k

Emax

τp
, (32)

p̃
(d)
k = φ

(d)
k

Emax

τd
. (33)

These estimated powers should not be directly employed for
pilot and data transmissions. Indeed, this is a poor approach
since the fractions of energy are randomly sampled as shown in
(29), (30) and (31) and must vary around the mean. To solve this
problem, we propose to store the estimated powers that achieved
the highest reward (which will be defined later) until the time
slot t. Thus, let p(p)

k,max and p(d)
k,max be the stored powers and r(t)max

the highest reward obtained until time slot t. We only use p̃(p)
k

and p̃(d)
k for pilot and data transmissions if the reward obtained

is higher than r(t)max, otherwise, we use p(p)
k,max and p(d)

k,max.
Now, we need to define the reward, which should be designed

to maximize the objective function that we desire to optimize.
Thus, the obvious choice is

r(t) = U(R1, . . . , RK). (34)

Consequently, r(t) = mink Rk when the focus is on the max-
min SE problem and r(t) =

∑K
k=1 Rk when the aim is at max-

imizing the total throughput. Note that the reward is computed
using the estimated powers and is equal to all agents.

Finally, each agent k observes the next state, s(t+1)
k , computes

the TD error using (23) and updates Ωk and Θk by minimizing
the loss functions in (24) and (25), respectively, using the gra-
dient descent. This process is repeated until the optimal policy
is obtained or the exploration phase is finalized. The complete
DRL algorithm can be seen in Algorithm 2.

To initialize the algorithm, we assume that each agent ran-
domly initializes the NNs’ parameters and setp(p)

k,max,p(d)
k,max and

r
(0)
max equal to zero. The CPU sets p(p)

k and p(d)
k equal toEmax/τc

and computes {ωm,k}∀k,m∈Mk
, {R̃(0)

k }∀k and r(0) using (26), (7)

and (34), respectively. After that, the CPU sends p(0)
k , R̃(0)

k and
r(0) to each agent k, which will be used to compute the state of
agent k. Also, Algorithm 2 can execute τs iterations to update the
NNs’ parameters before the pilot and data transmissions. This
can be advantageous because it reduces the exploration phase.

Algorithm 2: Decentralized Solution Based On DRL.
1: UE: Initialize Θk and Ωk randomly and set

p
(p)
k,max ← 0, p(d)

k,max ← 0 and r(t)max ← 0;

2: CPU: Send p
(0)
k , R̃(0)

k and r(0) to each agent k using
uplink signaling;

3: SET t← 1;
4: for e = 1, . . . , Te do
5: for l = 1, . . . , τs do
6: UE: Observe the current state s(t)k as shown in (27)
7: UE: Get an action using (29), (30) and (31);
8: UE: Compute p̃(p)

k and p̃(d)
k using (32) and (33),

respectively;
9: UE: Send p̃(p)

k and p̃(d)
k to the CPU using uplink

signaling;
10: CPU: Set p(p)

k ← p̃
(p)
k and p(d)

k ← p̃
(d)
k ∀k ∈ K;

11: CPU: Compute {ωm,k}∀k,m∈Mk
, {R̃(t)

k }∀k and
r(t) using (26), (7) and (34), respectively;

12: CPU: Send p
(t)
k , R̃(t)

k and r(t) to each agent k
using downlink signaling;

13: if r(t) > r
(t)
max then

14: UE: Set p(p)
k,max ← p̃

(p)
k , p(d)

k,max ← p̃
(d)
k and

r
(t)
max ← r(t);

15: end if
16: UE: Observe the next state s(t+1)

k as shown in (27)
17: UE: Compute the TD error using (23);
18: UE: Update Ωk and Θk by minimizing the loss

functions in (24) and (25), respectively;
19: SET t← t+ 1;
20: end for
21: UE: Use p(p)

k,max and p(d)
k,max for pilot and data

transmissions;
22: CPU: Set p(p)

k ← p
(p)
k,max and p(d)

k ← p
(d)
k,max ∀k ∈ K;

23: CPU: Compute {ωm,k}∀k,m∈Mk
using (26);

24: CPU: Perform channel estimation and data decoding;
25: end for

C. Signaling Aspects

In this section we propose a signaling framework for practical
implementation of the proposed decentralized solution. Observe
that, to compute its state, each agent k requires its estimated SE
achieved in the previous time slot, the reward and the estimated
power values in the previous time slot of users using the same
pilot sequence of user k, as shown in (27). This information
requires some knowledge about the interfering users. However,
only local information is available at each user. On the other
hand, the CPU requires the power values of all users to compute
the receive filter coefficients and the reward and, consequently,
the SE achieved for each user.

In this context, we propose that all users send the power
values to the CPU that, in its turn, computes p

(t)
k , R̃(t)

k and
r(t) and sends back this information to the users. Thus, during
the execution of Algorithm 2, that information is transmitted
and received by means of an over-the-air signaling between
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Fig. 1. Frame structure.

Fig. 2. Signaling exchange used in the decentralized solution.

users and their respective master AP, which is responsible to
forward information from users to the CPU and vice-versa, while
the communication between the master APs and the CPU is
performed by fronthaul signaling. In this paper, the master AP
of user k is the one with highest large scale fading coefficient,
i.e., m = arg maxm∈Mβm,k.

Given these considerations, Fig. 1 presents the proposed frame
structure. Note that the frame structure is split into three parts:
setup, pilot transmission and data transmission phases. The over-
the-air and fronthaul signaling are performed in the setup phase,
which is divided into phases: i) uplink signaling, denoted as US,
which corresponds to line 9 of Algorithm 2, where the users
send the power values to the CPU; and ii) downlink signaling,
named DS, which occurs in line 12 of Algorithm 2, where the
CPU sends information to the users, such as the reward. The
signaling exchange is illustrated in Fig. 2.

Note that the setup phase occurs at the beginning of each
coherence interval. Moreover, each iteration occupies one sam-
ple of the coherence interval. Hence, we now have that τd =
τc − τp − τs, thus, the effective SE achieved by user k, when we
take into account the signaling overhead of τs iterations during
the setup phase, is given by

Reff
k = (1− (τp + τs)/τc) log2(1 +Υk). (35)

D. computational Complexity and Signaling Overhead

The solution proposed in Algorithm 1 consists of a centralized
approach in which the CPU is responsible for computing both
pilot and data powers, as well as the receive filter coefficients.
Then, the CPU informs the values of p(p)

k and p(d)
k to the users.

Moreover, the per-iteration computational complexity of Algo-
rithm 1 is dictated by solving the GP problem in line 6, which
has a complexity equivalent to O((K(M + 2))3.5)[19].

Regarding Algorithm 2, the complexity is dictated by comput-
ing the actions and training the weights of the neural network on
the user side. Since we use neural networks composed of fully-
connected layers, the complexity of the proposed algorithm is
O(ul log(u)), where l is the number of layers andu is the number
of units per layer [43], [44].

Furthermore, the proposed solution can be implemented in
a distributed fashion by adopting an over-the-air signaling
scheme, which is described in Section V-C. In that signaling
scheme, each iteration has an associated overhead due to the
exchange of information between CPU and users. Based on [45]
we can measure the communication overhead by the number
of orthogonal pilot symbols needed for each iteration, which
is given by ω = 2τsK, where τs is the number of iterations in
the setup phase. Thus, the minimal number of orthogonal pilots
increases with the number of users and iterations. Therefore,
increasing the number of inner iterations of Algorithm 2 incurs
in a higher signaling overload. However, in order to obtain a
practical implementation of Algorithm 2 with minimal signaling
overhead, this number of iterations can be limited to a maximum
of 10 iterations per data frame, as suggested in [45], at the cost
of a possibly lower performance in some situations. Indeed,
by increasing the number of inner iterations we can obtain
a faster convergence of the proposed algorithm, which is an
important aspect in high-mobility scenarios. Alternatively, the
system operator could use an off-line training by collecting a
large training data set, such that the signaling of the training
phase is not needed anymore.

VI. NUMERICAL RESULTS

A. Simulation Setup

We consider the uplink of a cell-free system in which APs
and users are uniformly distributed within a square of size 1× 1
km2. A wrap-around technique is applied to imitate a network
with an infinite area. Moreover, a random pilot assignment is
used, i.e., each user randomly selects a pilot from a predefined
set of orthogonal pilots. The large-scale coefficients are mod-
eled by the path loss and correlated shadowing as follows (in
dB): βm,k = PLm,k + σshκm,k, where σshκm,k is the shadow
fading with the standard deviation σsh and κm,k ∼ N(0, 1),
while PLm,k is the path loss that is modeled by the three slope
model [5], [15]:

PLm,k =

⎧⎨
⎩
−L− 10 log10(d

3.5
m,k), if dm,k > d1

−L− 10 log10(d
1.5
1 d2

m,k), if d0 < dm,k ≤ d1

−L− 10 log10(d
1.5
1 d2

0), if dm,k ≤ d0
(36)
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TABLE I
SYSTEM PARAMETERS

in which dm,k is the distance between AP m and user k in
kilometers and

L � 46.3 + 33.9 log10(fc)− 13.83 log10(hAP)

− (1.1 log10(fc)− 0.7)hu + (1.56 log10(fc)− 0.8),
(37)

where fc is the carrier frequency (in MHz), hAP and hu are the
AP and user antenna heights (in m), respectively. There is no
shadowing if dm,k ≤ d1.

For the shadow fading coefficients, we consider a model
with two components [5], [46]: κm,k =

√
εam +

√
1− εbk,

where am ∼ N(0, 1) and bk ∼ N(0, 1) are independent random
variables, and 0 ≤ ε ≤ 1 is a fitting parameter with

E [aman] = 2−
da(m,n)
ddecorr , E [bkbj ] = 2−

du(k,j)
ddecorr , (38)

where da(m,n) is the distance between APsm and n, du(k, j) is
the distance between users k and j and ddecorr is the decorrelation
distance, which depends on the environment.

We use the largest-large-scale-fading-based AP selection
scheme from [14] to formMk and defineEmax = 100τcσ

2

β̃
, where

β̃ is the value of βm,k when the distance between a given AP
and user is lower than 10 m. This is equivalent to providing a
median signal-to-noise ratio (SNR) of 20 dB at the region close
to the APs. Also, numerical results are obtained by 500 random
realizations of APs and users locations. The noise power is given
by

σ2 = Δ× κB × T0 × σF. (39)

where κB is the Boltzmann constant, T0 is the noise temperature
andσF is the noise figure. The complete list of system parameters
can be seen in Table I.

With respect to the DRL-based solution, we have that each
agent is composed by two NNs: actor and critic. Both actor and
critic were implemented using Tensorflow [47] assuming one
input layer, one hidden layer and one output layer. The input
size is L = 2 + 2� in which ij� = K/τp is the factor of pilot
reuse. Moreover, we use the Adam algorithm [48] with a learning
rate equal to 0.001. We also assume a low mobility scenario for
which Te  T . Unless otherwise stated, we define Te equal to

TABLE II
DRL PARAMETERS

10,000 coherence intervals and τs = 1. Moreover, we consider
only the cases in which the Beta distribution is concave and
unimodal, i,e., Λ(s,Θ), B(s,Θ) > 1 and set ζ equal to zero.
In Table II, the architectures of the actor and critic NNs and the
hyper-parameter settings are listed in detail.

In the plots, the solution of problems (10) and (12) using SCA
and GP are called GP - Max-Min and GP - Sum-SE, respectively.
Similarly, the solution of problems (10) and (12) based on DRL
are marked as DRL - Max-Min and DRL - Sum-SE, respectively.
Moreover, we have two benchmarking solutions to evaluate the
performance of our algorithms. The first is the naive solution,
where we set p(p)

k = p
(d)
k = Emax/τc and ωm,k equal to 1 for all

k ∈ K andm ∈M, which is identified as Naive in the plots. The
second benchmark is the solution proposed in [15], which relies
on the bisection method and thus has a per-iteration complexity
in the order of O(K4) and is named as Mai in the plots.6

B. Results

Our discussion starts in Fig. 3, which shows the evolution of
Algorithm 1 for different numbers of antennas per AP. As we
can see, Algorithm 1 is able to solve both problems (10) and
(12), converging to a local optimal solution in a few iterations.
We also observe that both the minimum SE and sum-SE increase
as the number of antennas per AP increases.

Regarding the DRL-based decentralized solutions, an explo-
ration phase is required to update the NNs’ parameters. Thus, in
Fig. 4 we plot the utility function values during the exploration
phase for different numbers of iterations in the setup phase.
To obtain a fair comparison, we consider the same amount of
updates of the NNs’ parameters in all cases, i.e., the product
between the number of time slots and the number of iterations in
the setup phase is equal for all cases. Specifically, we consider
Te · τs = 10, 000. Then, as we can observe, the minimum SE
and sum SE of GP - Max-Min, GP - Sum-SE, Naive and Mai
solutions, are kept constant during the exploration phase. The
reason is that these solutions are performed only once every
T time slots. On the other hand, we observe that the DRL -
Max-Min solution improves the minimum SE in Fig. 4(a) with
time. Similarly, the DRL - Sum-SE solution improves the sum
SE in Fig. 4(b). This is expected because as the time passes, the
agents are able to learn a better policy, which aims to maximize
the obtained reward. In other words, the users learn to perform
a better pilot-and-data power allocation over time. Note that the
DRL - Max-Min decreases the sum SE with time because this
solution.

6Since Mai’s solution does not consider the energy budget constraint, we adapt
this solution by assuming the maximum pilot and data powers as Emax/τc.
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Fig. 3. Convergence of Algorithm 1 with {M,K, |Mk|, τp} = {100, 8, 3, 4}.
(a) GP - Max-Min. (b) GP - Sum-SE.

Furthermore, it can be noted that the convergence of the DRL -
Max-Min and DRL - Sum-SE solutions depend on the number of
iterations performed during the setup phase. Indeed, the greater
is the number of iterations in the setup phase, the faster is the
convergence. This occurs because more updates of the NNs’
parameters can be performed at each coherence interval before
pilot and data transmissions. However, this comes at the cost
of more signaling, consequently, less samples are used for data
transmissions, which affects the system performance. Based on
Fig. 4(a) and (b), we have a loss of approximately 2% and
5% of the system performance when 5 and 10 iterations are
used, respectively, in the setup phase. However, this can be
an important aspect to be employed in scenarios with higher
mobility, where the number of time slots dedicated to exploration
phase must be reduced. Also, we observe that the DRL-based
decentralized solutions are able to outperform the benchmark
solutions in a few time slots. Considering τs = 1 we observe
that the DRL-based decentralized solutions achieve similar per-
formance to those centralized solutions using SCA and GP with
only 5,000 time slots. In addition, focusing on Fig. 4(a), the
DRL - Max-Min solution presents a gain of approximately 21%
and 65% compared to the Mai and Naive solutions, respectively,
while in Fig. 4(b) the DRL - Sum-SE solution presents a gain
of approximately 25% and 8% compared to the Mai and Naive
solutions, respectively, with only 1,000 time slots.

Fig. 4. Utility function during the exploration phase with
{M,K,N, |Mk|, τp} = {100, 8, 8, 3, 4}. (a) Max-min SE. (b) Max-sum
SE.

To further evaluate the performance of the proposed solutions,
Fig. 5 presents the cumulative distribution function (CDF) of
the utility function for all solutions after the exploration phase
is finished. First, we analyze the performance with respect to
the minimum SE, which is shown in Fig. 5(a). As we can see,
the Naive solution presents the worst performance. This occurs
because the Naive solution does not perform a dynamic power
allocation, which affects the channel estimation and data trans-
mission, mainly of those users with worse channel conditions.
The Mai solution, in its turn, conducts a pilot power allocation
to minimize the largest normalized MSEs among users and,
next, applies a data power control to maximize the fairness
among users, which justifies its good performances compared
to the Naive solution. Interestingly, we observe that the DRL -
Sum-SE presents a slight gain compared to the Mai solution
for the simulated scenarios. Finally, the GP - Max-Min and
DRL - Max-Min solutions present the best performances, which
shows that performing JPDPC as well as optimizing the receive
filter coefficients can improve the system performance in terms
of minimum SE. Considering the 95%-likely point, the GP -
Max-Min and DRL - Max-Min solutions are able to increase the
minimum SE by 4 times compared to the Mai solution and 12
times with respect to the Naive solution.

Fig. 5(b) presents the CDF of sum-SE. It can be observed that
the GP - Max-Min presents the worst performance, which occurs
because it focuses on users with worse channel conditions to
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Fig. 5. CDF of the utility function with {M,K,N, |Mk|, τp} =
{100, 8, 8, 3, 4}. (a) Max-min SE. (b) Max-sum SE.

increase the minimum SE, thus decreasing the sum SE. The same
reasoning is valid for the Mai solution. On the other hand, the GP
- Sum-SE and DRL - Sum-SE have the best performance in terms
of sum-SE. This is expected because they aim at maximizing
the sum-SE. Compared to the Naive solution, for example, the
95%-likely of the sum-SE presents a gain of almost 17%.

In summary, we note a significantly increased system perfor-
mance in terms of minimum SE and sum SE when optimizing the
pilot and data powers jointly with the receive filter coefficients.
Moreover, the DRL-based decentralized solutions present very
close performances compared to the centralized solutions using
GP and SCA. Although there is no guarantee that Algorithm 1
can yield an optimal solution, it is the best solution available
that we know. Thus, these results validate the effectiveness of
DRL-based decentralized solutions.

However, Algorithm 1 fails to work on large-scale problems
due to its high computational complexity. Then, to further evalu-
ate the performance of the DRL-based decentralized solutions, in
the next numerical simulations, we compare the DRL - Max-Min
and DRL - Sum-SE solutions with the Mai and Naive solutions
using a larger scale network.

First, we analyze the impact of optimizing the receive filter
coefficients, which can be seen in Fig. 6. Thus, we consider two
alternative solutions in which only the powers are computed

Fig. 6. CDF of the utility function with {M,K,N, |Mk|, τp} =
{100, 20, 8, 10, 10}. (a) Max-min SE. (b) Max-sum SE.

based on DRL and the receive filter coefficients, {ωm,k}∀(m,k),
are set equal to 1/

√|Mk|, which is equivalent to the solution
in [17]. As we can see, the DRL - Max-Min and DRL - Sum-SE
solutions present the best performance in terms of minimum
SE and sum SE, respectively, which shows that the DRL-based
decentralized solutions can outperform the benchmarking solu-
tion even in large-scale scenarios. When increasing the scenario,
we observe that the DRL - Max-Min solution presents a good
performance in terms of sum SE. Indeed, it is able to overcome
the Naive solution for values above the 40th-percentile. Also, it
can be seen that the optimization of the receive filter coefficients
has different impacts on the utility function to be optimized. In
fact, in Fig 6(a) we note that the minimum SE presents similar
results for both cases, i.e., with or without receive filter coeffi-
cients optimization. The reason is that the max-min SE problem
focuses on the users with the worst channel condition, which
have low freedom to improve their SE. Then, after performing
the JPDPC, the gains of optimizing the receive filter coefficients
are practically inexistent. However, as the channel conditions
of users improve, we observe that optimizing the receive filter
coefficients brings benefits in terms of SE. That is more evident
when we focus on the sum SE objective function. As we can
see in Fig. 6(b) there is a significant increase in the sum SE
when the receive filter coefficients are jointly optimized with
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Fig. 7. CDF of the utility function with different τp and
{M,K,N, |Mk|, τs} = {100, 20, 8, 10, 1}. (a) Max-min SE. (b) Max-sum
SE.

the pilot-and-data powers. Indeed, the whole CDF is shifted to
the right by almost 7 b/s/Hz when the optimization of the receive
filter coefficients is performed, which represents a gain of almost
15% compared to case in which the receive filter coefficients are
not optimized.

Last but not least, Fig. 7 analyzes the performance of the
proposed solutions considering different τp (i.e., different levels
of pilot contamination). It can be observed that the minimum SE
increases as τp increases. This occurs because the pilot contam-
ination decreases, benefiting users in worse channel conditions,
consequently, the minimum SE tends to increase. On the other
hand, when analyzing the sum SE we note that the performance
of all solutions decreases when τp is equal to 20. The reason
behind it is that the number of samples available for data
transmission decreases. Moreover, comparing the performance
of all solutions we have that the DRL - Max-Min and DRL -
Sum-SE solutions present the best performance for all values,
indicating that the DRL-based decentralized solutions are also
able to manage different levels of pilots contamination. Another
important aspect to be mentioned is that the DRL-Max-Min
solution increases the gain compared to the Mai solution in
terms of minimum SE as τp decreases. This occurs because,
differently from the Mai solution, it performs a JPDPC, allowing
an enhanced management of the power resources and optimizes
the receive filter coefficients, which are assumed to be fixed

Fig. 8. Exploration Phase with user mobility, user speed of 3 km/h and
{M,K,N, |Mk|, τs} = {100, 8, 8, 3, 4}. (a) Max-min SE. (b) Max sum-SE.

in the May solution. Hence, the DRL - Max-Min is able to
deal with the pilot contamination more efficiently than the Mai
solution.

C. Extension to Scenarios With User Mobility

The previous case focused on stationary scenarios. However,
the proposed solution can also be extended to scenarios with
user mobility. Note that the status information does not directly
depend on the large-scale fading coefficients. In other words,
each agent observes only different levels of interference based
on the actions of each other. Thus, in order to obtain a good
performance, the proposed method must be trained assuming
different user positions and, consequently, different interference
levels. The user mobility model is based on [49, Annex A],
in which the user location should be updated every 20 time
slots. Moreover, the results are an average of ten initial positions
obtained randomly.

In Figs. 8 and 9 we show the performance of the proposed
method when user mobility is considered. Specifically, Fig. 8
shows the minimum SE and sum SE in the exploration phase
along the time with user speed equal to 3 km/h. For a better
visualization, each point is an average of the previous time slots.
That said, note that the DRL-based algorithms are able to learn
to take good actions since the proposed methods outperform the
state-of-art algorithms in a few time slots and the gap compared
to those algorithms increases over time. Thus, we have that
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Fig. 9. Execution Phase with user mobility and {M,K,N, |Mk|, τs} =
{100, 8, 8, 3, 4}. (a) Max-min SE. (b) Max sum-SE.

the proposed method can also learn to perform good actions
even when user mobility is considered, improving the system
performance in terms of minimum SE and sum SE compared to
the benchmarking algorithms.

In Fig. 8 the agents are always training the neural network
weights. Although this can be advantageous since agents are
constantly learning, this can be computationally costly. Thus, the
system operator can stop the training at any time and only actions
are then taken from the neural networks. We denote this phase
as the execution phase. The idea is to show that the proposed
method can generalize the training for other users’ positions
and, consequently, different interference levels. Therefore, we
dedicate 5,000 time slots for the execution phase in addition to
the 10,000 time slots used for training. In Fig. 9 we present the
performance of the proposed solutions considering different user
speeds during the execution phase. As we can see the proposed
DRL-based solutions are also able to outperform benchmarking
algorithms during the execution phase. This result shows that
the proposed DRL-based solutions can generalize the training
performed during the exploration phase in scenarios with user
mobility.

It is worth mentioning that even though the proposed solutions
have achieved interesting results in scenarios with mobility, we
believe that the performance of these solutions can be further
improved, e.g., by considering some information related to user

positions in the state of the proposed DRL-based solutions,
which is left for future works.

VII. CONCLUSION

In this paper, we investigated the JPDPC and receive filter co-
efficients design in the uplink of cell-free systems. Specifically,
two different objectives were considered, namely: 1) max-min
SE and 2) max-sum SE. The formulated problems were verified
to be non-convex and very difficult to be optimally solved.
They were then reformulated and iteratively solved up to a local
optimal solution by using SCA and GP. More importantly, de-
centralized solutions were proposed based on the multiple agents
DRL. Signaling aspects for practical implementation of the
decentralized solution were also provided. The numerical results
showed that DRL-based decentralized solutions for JPDPC in
cell-free systems is feasible and can perform close to centralized
solutions. Moreover, the decentralized solution outperformed
the benchmarking algorithms in terms of minimum SE and sum
SE for different scenarios and showed to be more efficient in
dealing with pilot contamination. Finally, as perspectives for
further studies we indicate the development of solutions that take
into account quality-of-service requirements and extensions of
the proposed framework considering high mobility scenarios.
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