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Abstract
Swarm algorithms promise to solve certain problems in large multi-robot systems. The evaluation of large swarms is however
challenging as simulations alone often lack some properties of real systems whereas real-world experiments are costly and
complex.Wepresent amixed reality (MR) system that connects simulated and physical robots though a 5Gnetwork, facilitating
MRexperiments to evaluate communication-based swarm algorithms. The effectiveness of the system is demonstrated through
extensive experiments with unmanned aerial vehicles. Measurements show that the communication requirements of swarm
coordination are well met by 5G but the computing power of the simulation server can be a bottleneck. However, evenwhen the
simulation slows down, communication and coordination take place in real time. In conclusion, 5G-enabled MR experiments
are a feasible tool for bridging the reality gap in the development and evaluation of robot swarms.

Keywords Drone swarm ·Mixed reality · Reality gap · 5G · Edge computing · Robot operating system (ROS)

1 Introduction

To develop systems with many drones aka unmanned aerial
vehicles (UAVs), experimental evaluation for debugging and
performance evaluation is crucial. On the one hand, simu-
lations with purely virtual objects can mimic and evaluate
many devices in a fast and repeatable manner without posing
a safety risk. On the other hand, physical experiments in real
environments exhibit higher fidelity and realism. However,
physical experiments withmultiple UAVs are influenced by a
variety of physical, financial, and regulatory framework con-
ditions, over which researchers have little control or which at
least represent administrative hurdles. These are, for exam-
ple, regulatory conditions (flight permission, prohibition of
beyond-line-of-sight flights), the availability of pilots, and
weather conditions.

Crossing from simulations over the reality gap to physical
experiments is a non-trivial task with no general solu-
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tion (Silva et al., 2016). Some approaches include real-world
experiments in the design process (e.g., Koos and Mouret,
J- B., Doncieux, S. (2013)), while others focus on creating
more realistic simulations tominimize the effect of the reality
gap (e.g., Ligot and Birattari (2022)). For bridging the reality
gap, we propose MR, which supports real-time experiments
of physical and virtual objects mapped into a common envi-
ronment (Hönig et al., 2015). Step by step, the reality gap can
be crossed by gradually increasing the proportion of physical
robots as the design process requires and general conditions
permit. This avoids the sharp change from simulation-only
to physical-only experiments. One can validate a swarm sys-
tem in realistic experiments and at the same time have a large
number of entities.

In this work, we use the termMR in the followingmanner:

There are one or more virtual environments containing
virtual robots, and a physical environment containing
one or more physical robots. All environments share
a common coordinate system and are connected via
a communication network. The robots can interact by
exchanging messages.

We have neither augmented reality (where virtual robots are
projected into reality) nor augmented virtuality (where real
robots are projected into a simulator).
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This work presents for the first time an MR system that
connects virtual and physical robots via a cellular network
to evaluate the behavior of UAV swarms. The system con-
sists of physicalUAVs, edge servers simulating virtualUAVs,
and communication infrastructure to connect the UAVs. This
system enables researchers to evaluate swarms under realis-
tic conditions and increase their size beyond physical limits.
It is aimed for the development of communication-based
swarm algorithms and demonstration of swarms in the pres-
ence of regulatory limitations. The system requires the UAVs
to have localization and communication capabilities. As
sensor-based interaction is not supported, the UAVs do not
need to be projected into a common environment. Neverthe-
less, the positions of all UAVs are visualized on a terminal,
called ground control station (GCS).

Our system focuses on supporting the development of
swarm systems where robots interact and apply distributed
decision making in order to fulfill a common goal that could
not be achieved by a single robot. Such swarm robotic appli-
cations are still scarce. Most commercial solutions, such as
modern drone light shows, continue to use centralized con-
trol and execute pre-defined patterns, despite often using the
term “swarm” (Schranz et al., 2020).

To demonstrate its applicability and usefulness in a spe-
cific setup, we use the system in a coverage mission, where
a swarm of virtual and physical UAVs interact to avoid
collisions between swarm members. This demonstration is
complemented by performancemeasurements to evaluate the
scalability concerning computational and network resources.
We conclude that the used 5G network is well suited for
such missions and poses no limitations. However, the perfor-
mance of the simulation computer limits the swarm size due
to highCPU requirements. The swarmperformance degrades
gracefully when overloading the simulation server: while the
movement of the virtual UAVs slows down, communication
and coordination still happen in real time.

The paper is structured as follows: Section 2 reviews the
state of the art. Section 3 describes the system architecture
and Section 4 the protocol and communication architecture.
Section 5 evaluates the system. Section 6 concludes.

2 Related work

The related literature can be divided into (1) the application
of MR to robotics, (2) the development of communication
infrastructures forMR, and (3) approaches to bridge the real-
ity gap.

2.1 Mixed reality in robotics

Applying MR to robotics dates back at least to the 1990s.
The main application envisioned was human-robot interac-

tion to simplify the control and supervision of robots (Freund
and Rossmann, 1999). This research field is still very active.
Challenges include tracking and synchronization of different
coordinate systems (Ostanin et al., 2019) and visualization
of the robots’ intentions (Ostanin et al., 2021). This allows
for applications such as debugging of robot behaviors (Hop-
penstedt et al., 2019), tele-operation (Welburn et al., 2019;
Jang et al., 2021), or shared environments (Phan et al., 2018).

There is little theoretical work on the formalization ofMR
robotic systems besides a general development process for
complex systems that employs multiple levels of virtualiza-
tion (Jakob et al., 2012). It starts from a purely virtual system
and gradually moves to the physical systems by incremen-
tally increasing the amount of physical system components.

System design using MR is an important research direc-
tion, as it gives a better understanding of robot behav-
ior (Chen et al., 2009) and facilitates safer testing scenar-
ios (Zofka et al., 2018). Employing MR as intermediate step
between simulation and physical experiments gives deeper
insight into the system performance and effectively improves
the development process of UAV systems (Chen et al.,
2012). This leads to a workflow, starting from purely virtual
experiments, to MR experiments with some hardware com-
ponents, to completely physical experiments (Burgbacher et
al., 2011). This is closely related to hardware-in-the-loop
where simulated robots use some components (e.g., sensors
or actuators) of physical robots (Pizetta et al., 2016).

In research on multi-robot systems, MR is proving to be
particularly valuable as it enables studies with many robots
despite physical, financial, and regulatory constraints. For
example, MR can be used to verify the behavior of a UAV
swarm, as it was done by Steup et al. (2016). A digital twin of
the physicalUAV integrates range sensor readings of physical
and virtual sensors. The presented approach overcomes the
need for an external localization system by using on-board
pose estimation relying only on local sensor data. A similar
approach is followed by Liu et al. (2020) which present an
MR framework for the development of multi-robot systems
based onRobot Operating System (ROS). One issue ofMR is
that virtual andphysical robotmodels are not always identical
leading to diverging behavior. A possible solution to this
problem is to let the virtual robots match the behavior of
the physical ones (Edwards et al., 2018). In later work the
authors study stability of swarm configurations influenced by
communication delays (Edwards et al., 2020) and colliding
flocks (Schwartz et al., 2021). Both studies require a large
number of swarm members and are enabled through MR
simulations.

2.2 Communication inmixed reality

An important aspect of MR systems is the communication
network that connects the robots. A possible architecture
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of a distributed MR system was presented by Hamza-Lup
et al. (2005) for sensor nodes to share information across
a local network. This facilitates spatially distributed col-
laborative applications. The study presented by Doppler et
al. (2017) analyzes the performance of high quality video
streams over wireless networks. The authors conclude that
the usage of 5G networks will enable the required throughput
and latency through massive multiple-input and multiple-
output (MIMO) andmillimeterwave technologies. To further
decrease the communication latency of computationally
intensive MR applications, edge computing can improve
the performance in presence of high delays to cloud ser-
vices (Takagi et al., 2019). A comprehensive communication
architecture for networking virtual and physical UAVs is pre-
sentedbySelecký et al. (2018). The authors build their system
on an infrastructure-less distributed network where multi-
ple simulated UAVs communicate using a single modem.
This creates issues that can alter the validity of experiments.
Examples are shared addresses of virtual UAVs which needs
to be resolved by specialized routing. Or wrong wireless
channel properties of virtual UAVs that need to be modeled
explicitly, e.g., the network can partition in a way that vir-
tual and physical UAVs cannot communicate anymore, even
though their (simulated) positions are are close to each other.

Our work is related to the solution presented by Selecký et
al. (2018) for networking virtual and physical UAVs. How-
ever, the major difference is that our solution is built on an
infrastructure-based 5G network.

2.3 Bridging the reality gap

The reality gap is a prominent issue in swarm robotics (Dorigo
et al., 2021), especially in evolutionary robotics (Silva et
al., 2016), where the process of evolving robotic controllers
requires many iterations of experimental evaluation. It is
probably the main obstacle for progress of evolutionary
robotics in real-world applications (Koos and Mouret, J-
B., Doncieux, S., 2013) due to the difficulty of accurately
simulating physical systems (Matarić and Cliff, 1996). In
fact, though Trianni and Dorigo (2006) were able to success-
fully transfer an evolved controller for communication-based
obstacle avoidance to real robots, they were not able to
explain the reason why they succeeded.

Several solutions have been proposed for addressing this
problem. Embodied evolution evaluates robotic controllers
directly on hardware platforms but is limited to small prob-
lems since the evaluation can be time consuming (Nolfi et
al., 1994; Floreano and Mondada, 1994). This process can
be sped up by evaluating only the last few generations of
the evolution on hardware or by injecting sampled data from
real sensors into simulations (Miglino et al., 1995). Another
variant is the combination of simulation and physical exper-
iments to steer the evolution to minimize the performance

Fig. 1 System architecture

discrepancy between them (Zagal and del Solar, 2007; Koos
and Mouret, J- B., Doncieux, S., 2013).

Simulation-based approaches can be applied tomore com-
plex problems since they speed up the the evolution through
faster evaluation of the generated robotic controllers. Jakobi
(1998) introduces the concept of minimal simulation, which
is reduced to a base set of features that are relevant for the
controller. Since it is non-trivial to derive such a base set,
Boeing and Bräunl (2012) instead simultaneously employ
multiple simulators in an effort to have the intersection of
the simulator features be such a base set. Similarly, Ligot
and Birattari (2022) predict the real-world performance of
controllers by evaluating them with simulation models, dif-
ferent from the ones used in the design process. Despite these
efforts, real-world experiments are still a crucial step in tack-
ling the reality gap.

3 System components

The system consists of three main components visualized in
Fig. 1: A swarm of physical UAVs equipped with LTE/5G,
one or more edge servers providing both the simulation envi-
ronment for the swarm of simulated UAVs and the discovery
service, and a GCS equipped with wireless communication
interfaces. All components are connected via an LTE/5G
campus network as part of the 5G Playground Carinthia1.
The network infrastructure is described in further detail in
Section 4.1.

3.1 Physical UAVs

The physical UAVs form the swarm operating in the real
world. Each UAV is built from commercial off-the-shelf
components. The flight control unit (FCU) is a Pixhawk
42 combined with common peripherals, including an u-blox
NEO-M8N global navigation satellite system module3. The

1 https://5gplayground.at/
2 https://docs.px4.io/master/en/flight_controller/pixhawk4.html
3 https://www.u-blox.com/en/product/neo-m8-series
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FCUcan run both PX44 andArduPilot5 firmware. It performs
the UAV’s low-level control, such as driving the motors to
reach waypoints. The companion computer performing the
high-level control is a Raspberry Pi 4b6. It is responsible
for diverse tasks including communication between UAVs,
collision avoidance, and mission execution. The UAVs can
communicate over LTE/5G. Connectivity is provided by a
Quectel RM500Q 5G sub-6GHz M.2 module connected to
the companion computer via USB. The module implements
3GPP Release 15 and supports both 5G non-standalone and
standalone mode. It offers 4×4 MIMO in the downlink with
up to 2.5Gbit/s and 2×2 MIMO in the uplink with up to
600Mbit/s.

The companion computer runs Ubuntu Linux. The con-
trol algorithms run in the ROS1 software framework. They
are built on top of CPSwarm libraries (Sende et al., 2021).
These include swarm algorithms organized hierarchically
to separate high-level mission algorithms from low-level,
hardware-related ones. The libraries also include the commu-
nication library swarmio for communication between ROS
instances. It contains a bridge that integrates with ROS and
serializes proprietary ROSmessages into a standardized pro-
tocol,which canbedeserializedbyother swarmio instances
and forwarded into their local ROS instance. In order for
swarmio instances to establish communication links, a dis-
coverymechanism is required. To do so, eachUAV includes a
discovery client that communicates with a central discovery
server. Details about the communication follow in Sect. 4.2.

3.2 Edge server

The edge server offers two functions: simulate the swarm of
virtual UAVs and provide the discovery mechanism for the
UAVs to establish communication between them.

3.2.1 Simulation server

The virtual UAVs are encapsulated in Docker containers.
Each container holds the same software components as the
physical UAVs (see Sect. 3.1). Moreover, each container
includes a simulation environment and an instance of the
FCU firmware. Each UAV is isolated from the rest of the
swarm in its dedicated simulator, i.e., there is no inter-
process communication. The only interaction between UAVs
comes from the network communication. This allows for fast
deployment of additional UAVs on different server machines
and is similar to how the physical UAVs interact. Although
the current system operates on a single edge server, the archi-
tecture is designed to accommodate the use of more servers,

4 https://px4.io/
5 https://ardupilot.org/
6 https://raspberrypi.com/products/raspberry-pi-4-model-b/

enhancing computational and storage capacities to scale up
the number of virtual drones.

The simulation environment used for experiments is
Gazebo (Koenig and Howard, 2004). It supports high fidelity
mobility in three dimensions and is well integrated with the
PX4FCUfirmware for software-in-the-loop execution. In the
simulations, PX4 controls a simulated UAV with the inputs
provided by the swarm algorithms. PX4 receives the sensor
data provided by the Gazebo simulator and forwards them to
the swarm algorithms.

3.2.2 Discovery server

The discovery server acts as the central registry that enables
distributed communication between the system entities. It
maintains a list of available UAVs, informing each other
of their existence. Such a central discovery mechanism has
certain drawbacks but is required in our LTE/5G campus net-
work as it does not support device-to-device links. In case of
other wireless technologies, such as Wi-Fi, a distributed dis-
covery service based on IP multicasting may run on each
UAV instead.

3.3 Ground control station

The GCS is the user terminal for the operators of the UAV
swarm. It enables them to monitor the swarm by receiving
telemetry information fromeachUAVand to guide the swarm
by issuing high-level control commands. As the UAV com-
panion, it runs Ubuntu Linux with ROS, swarmio, and
the discovery client. Swarmio offers command line and
application programming interfaces to access the teleme-
try information diffused by the swarmio instances of the
UAVs or to transmit control commands to the swarm algo-
rithms. Beyond this, the GCS can communicate with the
UAVsusing theMicroAirVehicleLink (MAVLink) protocol,
which enables the use of existing GCSs such as QGround-
Control7 or Mission Planner8 to communicate directly with
the FCUs of the UAVs. This can be used to display telemetry
data and to override swarm algorithms bymanual commands
in cases of emergency.

4 Communication

The communication network connects the main system com-
ponents: physical UAVs, GCS, and one or more edge servers
hosting the virtual UAVs.

7 http://qgroundcontrol.com/
8 https://ardupilot.org/planner/
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4.1 Infrastructure

The communication between the systemcomponents uses the
infrastructure of the 5G Playground Carinthia campus net-
work. It provides a 5G core and a non-standalone 5G radio
access network on LTE Band B7 (2600MHz) and 5G new
radio (NR) band n78 (3500MHz). The small cell radio unit
supports 4×4 MIMO with a modulation of up to 256 QAM
in the downlink and 64 QAM in the uplink. The integrated
antenna provides an output power of up to 10W and an
antenna gain of 10.5dBi. The campus network is connected
to the Internet via a 1Gbit/s symmetrical link but also pro-
vides a local breakout to edge servers. All nodes connected
to the 5G network can communicate with each other andwith
the edge servers. While this controlled environment benefits
from a guaranteed bandwidth and low latency, it is important
to mention that our system architecture also supports com-
mercial mobile networks. The only requirement is that all
nodes (the UAVs and the server) receive a public IP address
and that the TCP and UDP ports required for node discovery
and swarmio communication are not blocked.

The virtualized UAVs run in Docker containers, where
each container is assigned an IP address. The communica-
tion between virtual UAVs is achieved by connecting the
Docker containers to the physical network using a medium
access control virtual LAN interface that routes data between
the Docker containers via the underlying Ethernet interface.
Currently, we do not use a channel model to simulate the
imperfections of wireless communications. However, a tool
such as NetEm9 could be used to add delay, jitter, packet
loss/duplication, or re-ordering to the links between the vir-
tual drones.

4.2 Protocols

ROS 1was designed as robotics middleware for controlling a
single robot. The processes of such a robotic system commu-
nicate over a (local) network while always being connected
to and managed by a process called ROS master. The master
sets up connections between different processes that subse-
quently communicate directly, using different patterns such
as publish-subscribe or request-response. Whereas such a
single-ROS-instance architecture already provides network-
ing capabilities, the strong dependency on themaster process
renders it impractical for multi-robot systems communi-
cating through an unreliable radio network. Our proposed
architecture therefore uses amulti-master setup inwhich each
UAV runs its own ROS instance.

Swarmio extends the communication capabilities of
ROS 1 by bridging the publish-subscribe-based communi-
cation of multiple ROS instances. It subscribes to specified

9 https://wiki.linuxfoundation.org/networking/netem

Fig. 2 Node discovery in the network

communication channels, called topics in ROS. Topics are
named buses carrying messages of a well-defined data type.
Swarmio forwards the information received on these topics
to other swarmio instances, which republish the received
information to their local ROS instances. This information
can be broadcast to all UAVs or sent via unicast to specific
UAVs. The communication between individual swarmio
instances is based on the Zyre library, which “provides
reliable group messaging over local area networks.”10 Node-
to-node communication is based on the ZeroMQ Message
Transfer Protocol (ZMTP) using TCP sockets. Group man-
agement and node discovery is based on ZeroMQ Realtime
Exchange Protocol (ZRE) using UDP sockets. A limitation
of this protocol stack is that it requires broadcast commu-
nication for node discovery. Whereas this is an efficient
communication mechanism in some wireless systems (e.g.,
Wi-Fi), cellular networks usually do not offer this function-
ality. Thus, we introduce a proxy service on each node and
a central discovery server that use unicast communication.
The discovery is based on a client-servermodel as depicted in
Fig. 2. The Zyre library broadcasts ZRE discovery beacons.
Each proxy forwards the locally received ZRE beacons to
the central discovery server. The server maintains a list of all
nodes from which it recently received a beacon. It forwards
the beacons to each node where the proxy services locally
re-broadcast them to perform the discovery with the existing
Zyre library.

An independent communication channel is established
with MAVLink for the communication between the UAVs’
companion computers and FCUs. The FCU sends telemetry
to the companion; the companion sends control commands
to the FCU. On the companion side, theMAVLink router for-
wards data packets to ROS, the swarm algorithms, and the
GCS. The GCS can thus directly communicate with the FCU
to receive telemetry and override the swarm algorithms.

10 https://github.com/zeromq/zyre
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5 Evaluation

The proposed system consists of multiple subsystems which
we evaluate individually before analyzing the whole system.
This enables us to account for different aspects with spe-
cialized performance metrics. To this end, we first analyze
the communication network and the computation require-
ments individually. We then analyze their interdependence
and how both affect the performance of coordination. For
this, we employ a mission including virtual and physical
UAVs that coordinate through communication. For our per-
formance measurements, we consider a mission in which a
swarm of UAVs randomly covers a given area while avoid-
ing collisions. This scenario includes all system components
but is simple enough to be the basis for many real-world
applications.

5.1 Communication network

As a first step, we determine the limits of the communication
network that consists of both radio link and wired backhaul
link connecting the UAVs to the edge server. We evaluate the
network performance by measuring the maximum achiev-
able performance in terms of latency (round-trip time) and
throughput with the ping and iperf311 tools. As shown
in Fig, 3, the experiment consists of five UAVs connected via
one 5G base station to five iperf3 server instances on the
edge server. Each UAV runs an iperf3 client.

Uplink, downlink, and latency are evaluated after each
other. The number of UAVs is varied from one up to five.
This results in a total number of 15 runs, each run with a
duration of 60 s.

Figure 4 shows the average throughput per UAV and the
aggregated throughput for up- and downlink. Each data point
expresses themean value.Due to their small size, comparable
to the data points, confidence intervals have been omitted for
clarity.

Adding more UAVs decreases the per-UAV-throughput
(for both up- and downlink), since all share the available
5G NR bandwidth (Fig. 4a). However, increasing the num-
ber of communication pairs, first increases the aggregated
throughput as a single UAV cannot fully utilize the avail-
able bandwidth, before the aggregated throughput decreases
again due to the interference caused by the simultaneous
communication of all five UAVs (Fig. 4b). The maximum
average aggregated throughput is 437Mbit/s in the downlink
and 118Mbit/s in the uplink. In our measurements, the round
trip time is independent of the number of UAVs with a mean
of 9.81ms and the 95% confidence interval of 0.27ms.

As a next step, we evaluate the network requirements of
the MR coverage mission with one physical and four virtual

11 https://iperf.fr

Fig. 3 Setup for the network measurements

UAVs as depicted in Fig. 5. The physical UAV is connected
via a 5G NR link to the virtual drones deployed in Docker
containers on the simulation server. Each UAV sends ROS
messages, including information about its current position
and orientation, to every other UAV. Based on this informa-
tion, eachUAVcalculates a route that prevents collisionswith
other UAVs.

The size of the message payload is 399B, including over-
heads introduced by swarmio, e.g., for serialization. At an
update rate of 10 s−1, each UAV requires about 3.1kbit/s to
inform another UAV about its position. The overall through-
put requirement increases with the swarm size N at a rate of
N (N −1) ·3.1 kbit/s. Thus, the evaluated uplink bandwidth
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Fig. 4 Per-UAV throughput and aggregated throughput for downlink
and uplink

Fig. 5 Network architecture of the MR coverage mission

of 118Mbit/s can support about N = 195UAVs.This estima-
tion neither includes the overhead introduced by the network
protocols for headers, acknowledgments, re-transmissions,
etc. nor the uplink bandwidth requirements for any additional
payload data.

5.2 Computation

Next, we evaluate the performance requirements of the sim-
ulated UAVs. For this purpose, we simulate the missions
with a varying number of UAVs and measure the CPU and
memory usage. In our system, each UAV resides in its own
container with its own simulator. On the one hand, this
approach allows for easy scaling of experiments by adding
and removing UAVs as well as moving containers between
servers in the network. One the other hand, we expect higher
resource demands, leading to lower performance compared

Table 1 Average memory usage per simulated UAV of the different
process classes

single simulator multi simulator

simulator 11MB 185MB

FCU 7MB 7MB

ROS 92MB 190MB

algorithms 303MB 421MB

total 413MB 803MB

to the case where all simulated UAVs reside in the same
Docker container in a single simulator. Therefore, we com-
pare our system to the latter case with a single simulator. The
edge server has an Intel Dual CPU (2× Xeon E5-2698 with
24 cores at 2.3GHz) with 64GB ECCDDR4 RAM and 2TB
SSD storage, running an Ubuntu virtual machine with 16GB
of memory and 24cores.

We measure the memory usage as the mean of each
experiment as it stays mostly constant throughout a whole
experiment. There is a linear increase with the number of
simulated UAVs for both single and multi simulator scenar-
ios. Table 1 shows the memory used per simulated UAV. As
expected, the overall memory usage increases faster for the
multi simulator case. The rate is about twice as high for the
multi simulator as for the single simulator, where the main
difference lies in the simulator processes. Most resources
are used by the algorithms, followed by ROS, simulator, and
FCU.

As the CPU time increases mostly linearly over time, we
provide the relative CPU time. It is calculated as CPU time
over experiment duration. Figure 6 shows the CPU usage of
the simulation as relative CPU time.Most CPU resources are
used by the algorithms, followed by the simulator, FCU, and
ROS. As expected, the overall CPU usage increases faster for
the multi simulator case. It increases linearly for up to five
UAVs before its growth starts to decrease, reaching a plateau,
indicating the overloading of the CPU at 4.8 cores per UAV.
In the single simulator case, the linear increase of the CPU
usage already begins to plateau at around four UAVs or six
cores per UAV.

5.3 Coordination

Ultimately, we want to know how well UAVs can coordinate
in different situations. Our communication analysis showed
that the network provides enough resources for the cover-
age mission. Our focus question will therefore be: how will
overloading the simulation server affect communication and
coordination. For this purpose, wemeasure the real-time fac-
tor (RTF) of the simulator(s) during the mission. It expresses
how the simulated time slows down in relation to the real
wall time. Figure 7 shows the RTF over the number of UAVs
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Fig. 6 Relative CPU time used by the different process classes (average
and 95% confidence intervals)

Fig. 7 Average RTF of the simulations

for both single and multi simulator experiments. Due to their
small size, comparable to the data points, confidence inter-
vals have been omitted for clarity. We take the mean of each
experiment since the RTF stays relatively constant through-
out one experiment.

Surprisingly, the RTF is higher in themulti simulator case.
From thiswededuce that a single simulator cannot parallelize
well its computations for large swarms. Hence, themulti sim-
ulator is better suited for swarms with more than three UAVs
if memory is sufficient on the simulation server. We also see
that the performance starts to drop once the growth of the rel-
ative CPU time begins to plateau, i.e., for four UAVs in the
single simulator case and five UAVs for the multi simulator
case.

Tounderstandwhat these resultsmean for the coordination
between UAVs, we measure the application layer communi-
cation delay between UAV pairs. The delay is almost not
influenced by the RTF, always staying below 10ms. Added
to the measured communication delay in the 5G network of
9.81ms ± 0.27ms, the total communication delay between
UAVs always stays below 20ms. This time is negligible com-
pared to the flight dynamics of UAVs that typically travel at
velocities below 20 m/s. Even an extreme deceleration of

Fig. 8 Collision avoidance trajectories at different RTFs including time
after mission start (i.e. takeoff), measured by the physical UAV

10m/s2 leads to breaking times that are several orders of
magnitude larger than the communication delay.

To better understand the impact of the RTF, we create a
benchmark scenario in which two UAVs, one physical and
one virtual, directly approach each other.As described above,
they exchange their positions and run a collision avoidance
algorithm to calculate trajectories that do not collide with
each other. We perform this experiment for different RTFs.
The results are shown in Fig. 8.

Both UAVs start flying towards each other from 40m
apart. For a RTF around 1 (Fig. 8a), they meet in the mid-
dle, avoid collision by changing their path, and continue on
towards the goal. When the RTF gets lower (Fig. 8b), the vir-
tual UAV moves slower, since the simulation does not run in
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real time anymore. Hence, the UAVs meet closer towards the
starting point of the virtual UAV. Nevertheless, they success-
fully avoid each other. This can be seen even more strongly
for a very low RTF of 0.4 (Fig. 8c) where the UAVs meet at
the starting position of the virtualUAV. Still they successfully
avoid each other and proceed towards their goal. From this,
we conclude that a decreasing RTF slows down the move-
ment of virtual UAVs but still allows real-time interaction
with physical UAVs.

6 Conclusions

Thepurposeof ourmixed reality system formulti-robot/drone
experiments is to facilitate the development of swarm appli-
cations by scaling the system size beyond physical, financial,
regulatory, human resource, and other limitations. The focus
is on UAVs that interact solely by communication: The phys-
ical UAVs interact through 5G; virtual UAVs are added in
simulation on an edge server running the same ROS-based
software stack as the physical UAVs.

An experimental performance study evaluated the feasi-
bility of the network and the edge server simulation. It was
shown that 5G is capable of providing the communications
infrastructure for a swarm of UAVs to coordinate in real-
time. While the uplink of the 5G new radio reaches up to
118Mbit/s, the required throughput for N UAVs to avoid col-
lisions is N (N−1)·3.1 kbit/s. The bottleneck for scalability
is the single edge server. The memory and CPU require-
ments in our exemplary mission scenario are 803MB and
four to five CPU cores per simulated UAV. Nevertheless,
if simulations slow down due to limited resources, the sys-
tem reacts with a graceful degradation: it only slows down
the movement of the simulated UAVs but maintains com-
munication and coordination. It is important to note that our
architecture is designed for scalability; virtual drones can be
simulated across multiple edge servers, effectively distribut-
ing the resource load. Thus, the scalability challenge can
be addressed by incorporating more edge servers, enhancing
overall memory and processing capabilities.

We conclude from these results that the proposed system
iswell suited to improve the development of communication-
based swarms. Through MR experiments it enables resear-
chers to validate swarm algorithms in realistic settings with
many UAVs and helps to bridge the reality gap.

A major limitation of the system is that it only works for
communication-based interaction. In future work, we like to
address this problem through augmented virtuality by pro-
jecting the physical UAVs into the simulatedworlds. Another
direction for future work is the integration of wireless net-
work simulation into the existing framework, specifically for
enhancing the realism of communication among simulated
UAVs. The goal is to more precisely simulate the imperfec-

tions of real-world wireless networks, thus providing more
realistic evaluation scenarios.
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