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Abstract—This paper presents a deep learning approach for
drone navigation aimed at accurately estimating a drone’s
position based on Received Signal Strength (RSS) in a simulated
environment. A predefined route is established, and the drone
collects RSS and Inertial Measurement Unit (IMU) data while
traversing it multiple times. This dataset serves as the foun-
dation for training various neural network architectures. We
create multiple training and test datasets to compare different
models and identify the most effective approach for predicting
the drone’s location. After training, the neural networks are
evaluated using distinct test data, showing that deep learning
models can reliably predict a drone’s position in simulation. The
developed predictive models enhance the accuracy and reliability
of autonomous drone operations in real-world scenarios.

Index Terms—Drone Navigation, Received Signal Strength
(RSS), Model Comparison, Position Estimation

I. INTRODUCTION

In recent years, there has been a significant rise in the
utilization of Unmanned Aerial Vehicles (UAVs), commonly
referred to as drones. Drones are increasingly being used
across various industries, including delivery services, search
and rescue operations, real estate marketing, agriculture, and
infrastructure inspection. Various real-world uses of UAVs en-
compass tasks such as search and rescue missions, delivering
goods, agricultural endeavors, and conducting inspections on
structures.In addition to being utilized by many for recre-
ational purposes such as capturing photos and videos due to
their affordability.

In various contexts, having precise information about the
whereabouts of a drone is of utmost significance. This holds
true whether the drone is being piloted remotely or operating
autonomously. In this paper, we delve into exploring methods
to accurately determine the location of a drone. This involves
leveraging Received Signal Strength Indicatior (RSSI) data, a
metric that measures the strength of signals received by the
drone, data coming from the IMU, and employing sophisti-
cated machine learning techniques to process and interpret
this data effectively. The proposed method in action can be
seen here: [1]

Despite the increasing popularity of drones, there are
several challenges and limitations in accurately determining
their location. These challenges come from different factors,

979-8-3315-0973-6/24/$31.00 ©2024 |IEEE

39

like environmental conditions, sensor limitations, and the
complexity of the operational context.

Most drones come equipped with a GPS module to fa-
cilitate precise location data access, in addition to vari-
ous other sensors. PX4 offers compatibility with various
Global Navigation Satellite System (GNSS) receivers and
magnetometers (compasses). Additionally, it supports Real
Time Kinematic (RTK) Global Positioning System (GPS)
Receivers, which enhance GPS systems to provide accuracy
down to the centimeter level. [2] The study [3] demonstrates
the reliable performance of GNSS RTK for UAV localization
using the Third Generation Partnership Project (3GPP) Long-
Term Evolution (LTE) Positioning Protocol (LTE Positioning
Protocol (LPP)) over a cellular network, with no loss of RTK
GNSS fixed solution observed during both static and flight
tests.

However, there may be situations where, for instance,
GPS functionality is compromised due to factors such as
signal interference or obstruction by tall buildings or dense
foliage. In such cases, it becomes crucial to rely on alterna-
tive methods for locating the UAV. For example, in urban
environments with tall buildings that block GPS signals this
situation could easily happen. It is also worth noting that
cellular positioning can also complement GNSS by providing
an independent verification method. A method for redundancy
in localization methods would ensure the continued operation
of the UAV even in challenging conditions where GPS signals
are unreliable or unavailable.

Using RSSI values to predict a drones location is an estab-
lished research problem. Authors of [4] focus on outdoor 3-
Dimensional (3D) drone geolocation using Radio Frequency
(RF) signals and machine learning-based techniques. With
their approach, which is - "Hybrid RSSI-based 3D geolocation
blending trilateration and ML-driven regression’ - an average
3D error of approximately 11.7 meters could be achieved.
Our paper extends their work by elevating the complexity of
the applied ML models exploiting the sequential nature of the
data.

To meet the above mentioned requirements, this paper
proposes the development of an alternative method to localize
the drone and overcome on the mentioned challenges. In this



approach, we begin by constructing a virtual environment
to conduct all experimental procedures. This environment
consists of multiple components, which will be elaborated
upon in the forthcoming section (Section III). Notably, the
simulated environment is unique in its ability to leverage
ray tracing methodology for calculating path losses/RSSI
values. Within this environment, various datasets are gathered,
which served as inputs for training distinct Neural Network
(NN) models. These models are trained and evaluated their
performance, comparing their outcomes.

Overall, this paper aims to develop a method for enhancing
drone localization accuracy by leveraging RSSI data and
advanced machine learning techniques. Through the construc-
tion of a simulated environment and the utilization of neural
network models, the objective is to create a robust localization
system capable of accurately predicting the drone’s position
in various operational scenarios. By addressing the challenges
associated with traditional localization methods and harness-
ing the power of machine learning, this paper endeavors to
contribute to the advancement of drone navigation technology
and facilitate the safe and efficient deployment of drones in
real-world applications.

II. RELATED WORK

According to [5], positioning, Detect-and-Avoid, and other
safety-related sensors are critical for Beyond Visual Line of
Sight (BVLOS) operations, as well as for UAVs autonomy.
While GPS is often used for location, it may not always be
sufficient or necessary for safe operations in certain scenarios.
The robustness of any sensor system should be evaluated
during the operational approval process, considering the risks
involved. In GPS-denied environments like urban canyons,
alternative methods such as vision-based systems or dead
reckoning should be considered viable options for positioning.

Authors of another study [6] propose a novel approach by
integrating Huber loss with altitude constraints to enhance
localization using RSSI data. The proposed method median
error is 5.4 meters in static conditions. However, this error
increases to 62.98 meters in dynamic situations. In our work
the dynamic environment (moving drone) is more emphasised
and since this method has a relatively large error, we are
experimenting with other techniques (see below). Authors
of [7] introduce a method, were traditional fingerprint-based
method and deep-learning is combined to predict the location
of a drone in an indoor environment. Their method is similar
to the work in this paper, however in that case the used
deep-learning model is a classifier but in this case it predicts
continuous values (regression).

Another method using Recurrent Neural Networks (RNNs)
for three-dimensional node localization in UAV-assisted wire-
less networks is proposed in [8]. In this paper the nodes
are localised, but the models - RNN - used for localisation
is relevant to my case. Their approach achieved significant
results, including enhanced localization precision. As for the
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future direction, Long Short-Term Memory (LSTM) model is
also mentioned, which is utilized in this method.

III. IMPLEMENTATION DETAILS
A. The Simulator

Gazebo is an open-source 3D physics simulator that is
widely used for simulating robots and other complex sys-
tems. It provides an environment for testing and developing
robotics algorithms and hardware in a safe, controlled virtual
environment. Gazebo can simulate sensors, actuators, and the
physical interactions between objects, making it a valuable
tool for simulating complex robot behavior and testing control
algorithms.

Gazebo is highly customizable and can be extended with
plugins and other features to support a wide range of use
cases. It is commonly used in research, education, and in-
dustry for developing and testing robots and other complex
systems.

The development of Gazebo is sponsored by the Open
Source Robotics Foundation, which also sponsors the de-
velopment of the Robot Operating System (ROS). As a
result, Gazebo integrates well with ROS and is often used
in conjunction with ROS to provide a complete simulation
environment for robotics research and development.

Some of the key features of Gazebo [9] include its support
for multiple physics engines, its ability to simulate sensors
and actuators, its support for multiple robot models, and its
integration with ROS.

B. GPU Accelerated Radio Frequency Path Tracer

Specialized processors, such as Graphics Processing Units
(GPUs), are vital for task acceleration. Originally designed
for graphics, GPUs are now utilized for general-purpose
computing, including Artificial Intelligence (AI) and video
processing, thanks to their powerful shader pipelines that
significantly outperform traditional Central Processing Units
(CPUs). Nvidia’s 2019 RTX cards introduced real-time hard-
ware ray tracing to consumers.

Our tool [10] harnesses Nvidia’s RTX for efficient ray
tracing, enabling precise calculations of RF transmission. It
models radio propagation in complex indoor environments,
considering detailed surface materials like metal coatings and
accounting for user mobility and object dynamics that may
disrupt connectivity between emitters and detectors. More
detailed working mechanism of the tool is discussed in [11].

C. Control of the drone

To control the drone in the simulated environment we
integrated PX4-Autopilot, which is an open-source flight
control software with modular architecture. [12]

The integration of ROS with PX4 and the Gazebo Clas-
sic simulator works through the MAVROS MAVLink node,
which enables communication between ROS and PX4. In
this setup, PX4 receives sensor data from Gazebo’s simulated



environment and sends motor/actuator commands. PX4 also
communicates with the Ground Control Station (GCS) and
an Offboard Application Programming Interface (API) (like
ROS) to send telemetry data and receive commands for
controlling the simulated drone. [13]

We created the mission plans - to gather training and test
data - in QGroundControl. [14]

IV. DATA COLLECTION AND MODEL TEACHING

For the data collection we had to implement missions for
the drone, where we define the trajectory where should the
drone fly and we set also the speed of the drone. The data
that we are collecting - both the training data and test - is
simulated. The missions are defined in the QGroundControl
Graphical User Interface (GUI). Three missions are defined
for gathering training data, which missions look the same
from the top view in the QGroundControl GUI Figure 1. Also,
three missions are defined as for gathering test data for three
cases. The three cases for the training and test dataset are the
following:

1) Constant altitude, constant speed

2) Varying altitude, constant speed

3) Varying altitude, varying speed

The speed of the drone is vVeonst = % in the case where
the altitude is not changing and in the varying case it is
between vVyqrying = 1 % — 10 =+ on the straight sections.
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Fig. 1: Data collection mission plan for teaching, generated
and displayed in QGroundControl

The perimeter of the area where we are collecting data is
around 2,463 m, the size of the area is around 367,156 m?2.

Six Base Stations (BSs) are placed in the area, the drone
in the simulation is (virtually) connected to all of these BSs.
The placement of the BSs can be seen on 3
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Fig. 3: Location of the six BSs

The data collection script is implemented in python as a
ROS node, which collects the data periodically while the
drone is doing the mission. The sampling period in every
case is constant 7, = 0.1 second.

One data record contain the following information:

1) Path loss (from each BS)

2) Angular velocity (x, y, z direction)

3) Linear acceleration (x, y, z direction)

4) Latitude, Longitude, Altitude

5) Local coordinates (X, y, z)

Theoretically, the correlation between path loss and RSS
can be considered to be -1 under ideal conditions. The ray
tracing software returns the path loss values of the rays, and
in this work we used those values for teaching the models.



A. Data Analysis

After collecting the data, an Exploratory Data Analysis
(EDA) is conducted. During the EDA, several steps are carried
out, starting with analyzing the correlation between the path
losses to identify relationships between the features. This is
followed by the visualization of the collected data to provide
a better understanding of its structure and distribution. Addi-
tionally, the takeoff and landing segments of the test data were
removed to avoid any potential biases they might introduce.
Finally, the data underwent transformation, including scaling
and Principal Component Analysis (PCA) in some cases to
ensure consistency and improve model performance.

Since we also examined how the prediction changes based
on the number of the BSs, we needed to identify which BS
not to consider in different scenarios. We made this choice
based on the correlation of the path losses and the Variance
Inflation Factors (VIFs) values of the different path losses.

1

VIF =1

ey

, where R? is the coefficient of determination obtained
by regressing the i-th variable against all other variables.
We dropped the feature - correspondig to a BS - with the
higher VIF value first. After the PCA the first 8 principal
components were chosen. Since take off and landing is not in
our main interest, we removed those parts from the test data
sets.

B. Models

The primary objective is to accurately predict the moving
drone’s location within the designated area given different
conditions. Essential to this task is determining the number
and placement of BSs required for precise predictions. Six
base stations, strategically positioned atop buildings, repli-
cated real-world conditions within the area.

We used Deep Neural Network (DNN), RNN and LSTM
models, implemented in TensorFlow/Keras. DNN model con-
sists of three hidden layers with ReLLU activations and dropout
regularization, designed for predicting positions using three
output units. It is compiled with the Adam optimizer and
trained with a mean squared error loss function for regression
tasks.

RNN model has three SimpleRNN layers, with the first two
returning sequences and the final one providing the output
sequence for prediction. It is designed for regression tasks
with three output units, compiled using the Adam optimizer,
and trained with a mean squared error loss function on
reshaped input data.

This model is a LSTM network with three LSTM layers,
where the first two return sequences and the last LSTM layer
outputs the final hidden state. It is designed for regression
tasks with three output units, compiled using the Adam
optimizer, and trained on reshaped input data with mean
squared error loss.
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The mentioned datasets are used to train the models IV,
with supervised learning. All of the models are tuned using
Keras Tuner, a hyperparameter optimization framework that
simplifies the search for optimal values through a define-by-
run syntax. Keras Tuner supports various search algorithms,
allowing for flexible and effective exploration of hyperparam-
eter spaces. [15]

V. EVALUATION

In the evaluation phase we used our models IV-B to make
predictions for the data in the test sets. The output is a
3D position. The Euclidean distance between two points in
3D space was calculated to measure the error between each
predicted and actual points. After that, for each test case
the average of the error distances are calculated. Since the
calculation of the average is sensitive to outliers, which are
extreme values that differ significantly from the rest of the
data, the average was calculated for the all of the error
distances and for the subset of the data - removed outliers
at the 0.95 percentile - as well.

During the evaluation it turned out, that PCA during the
data pre-processing improves the performance of the models
in case of 6 BSs.

We summarized the results in Table I to make the model
comparison easier. We had 36 simulation cases, not counting
the cases where we experimented with different data pre-
processing techniques like PCA. In the table the average of
the error distances (g) are inserted in meter [m] unit. We
also examined the standard deviation (o) of errors, which
indicates the variability of prediction errors, allowing to assess
the reliability and consistency of the model’s performance.

TABLE I: Model Performance

6 BS DNN (e, 0) RNN (g,0) LSTM (¢, 0)
C.Al, C.s2 102.5 46.4 19.1 12.3 1.8 3.7
V. A, C.S.2 1043 415 19.6 9.3 5.9 3.6

V. A, V.S. 1269  51.1 254 123 | 7.8 5.5

5 BS DNN (z,0) RNN (z,0) LSTM (z,0)
C.AY C.S2 | 1134 3427 | 187 11.4 1.4 2.6
V. A, C. 82 106.6 504 | 229 146 | 59 5.7

V.A,V.S. 139.8 298 | 246 96 | 691 62

4 BS DNN (z,0) RNN (z,0) LSTM (z,0)
C.AL C.s? | 11138 556 20.1 12.8 22 43
V. A, C.S.2 110.1 45.1 26 168 | 65 6.7

V.A,V.S. 1541 445 27.1 199 | 85 5.7

3 BS DNN (z,0) RNN (z,0) LSTM (z,0)
C. AL C.s2 57.7 24.7 23.7 14 1.6 1.8
V. A, C.S.2 76.7 421 19.7 114 | 8.1 10.3

V.A, V.S 1232 556 | 331 234 | 79 7
6 BS, PCA DNN (z,0) RNN (z,0) LSTM (z,0)
C. AL C.s? 84.3 29.4 26.1 18.8 1 1.2
V. A, C.S.2 83.6 27.3 37.1 497 | 53 4.5

V.A,V.S. 1105 511 | 1774 1198 | 6.5 6.2

LThere is no intentional change — constant (C) — in altitude (A) in the mission.
2The drone’s speed (S) is varying (V) in the bends.



In the data collection phase we defined three cases as
mentioned in IV. In the table we include the initials for the

different test cases.

In Table I in the last section the average of the error
distances are inserted in case of 6 BSs, doing PCA on the

data.
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Fig. 4: Spread of error distances

In our study, all results were generated and compared.
However, since they were similar, we focus on comparing
the results in two specific cases: first, with 3 BSs, the
lowest number of BSs, to demonstrate that even with minimal
information, our model was able to make accurate predictions;
and second, with 6 BSs and PCA, as this configuration
resulted in the best performance.

Based on the results in Table I and Fig. 4, in our case
the performance of the models are not dependent on the
number of BSs. Fig. 4 clearly illustrates that the RNN model
consistently produces many extremes and outliers across all
cases. These extreme values indicate a larger variability in the
model’s error distances. When we apply PCA to the data, the
performance of the RNN model worsens further, leading to a
broader spread of errors and even more pronounced outliers.
On the other hand, applying PCA results in a significant
improvement for the LSTM model. This enhancement is
reflected in a tighter distribution of error distances and fewer
occurrences of extreme outliers, making the LSTM model
more reliable. The box plots on Fig. 4 highlights that the DNN
model exhibits the worst performance among the models, as
indicated by the generally larger spread of error distances,
with the exception of cases (d) and (f). In contrast, the
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LSTM model consistently demonstrates the best performance,
showing the smallest spread of error distances in every case.
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Fig. 5: Error along trajectory

We are comparing on Fig. 5 the error distances along the
test trajectories. Among these models the LSTM looks the
most stable, meaning there are a lot less spikes on the graphs
than on the other two examined models. It is recommended to
examine Fig. 5 and Fig. 6 together. On Fig. 6 we are focusing
only for the LSTM model, since according the performance
of the examined models that is the most accurate and stable.
On the heat maps we can see where are the bends in the
trajectory, which is an important information, since in some
cases the error distances become the highest on those parts,
meaning a the outliers/extremes could be observed there with
the highest probability. The error distances calculated from
the predictions by RNN model shows a highly oscillating
pattern in the case of Fig. 5(f).

It is clear from these results, that the DNN model provided
the worst performance among the three models and the
average of the error distances is more than 80 m in each
case, which is highly inaccurate compared to the other two
models. Furthermore, the on average DNN model exhibits the
highest standard deviation values, which indicates a greater
variability in prediction errors compared to other models.

The RNN and LSTM models provided a lot more precise
estimation for the position, which we expected because the
next position was influenced by the previous one in the series
of drone movements, allowing these models to effectively
capture the patterns in the data. However, in the case or the
RNN model more spikes/outliers/extremes can be identified.
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Fig. 6: Heatmap along trajectory, LSTM

The standard deviation of the error distances was always
the lowest in the case of LSTM, which means among these
models it provided the most consistent predictions.

The best result is achieved on the dataset where both the
altitude and the speed was constant. The average of the error
distances is 1 meter in that case. The predictions in this case
can be seen on Fig. 6(b) and on Fig. 5(b). The best result
achieved in the most complex case is € = 6.5 [m] in Table L.

By doing PCA on the data we can acquire more precise
predictions with the LSTM model, however the more pre-
processing step on the data also increases the time of the
prediction, which we should keep low especially in the case
of a moving drone.

VI. CONCLUSION

In this paper we proposed a spatial prediction method
for UAV positioning. The proposed method involves the
application of LSTM model with PCA based preprocessing.
Our proposed method overcomes the state of the art in terms
of accuracy by roughly halving the error distance from 11.7 m
in [4] to 6.5 m in our case. This accuracy is maintained even
in the most complex case, when the drone had a varying speed
and each of its coordinates are changed at the same time.

We conclude that increasing the number of BSs, it does not
necessarily improves the location prediction. The movement
of the drone and the spatial location of the BSs has significant
effect how much is the data correlated. High correlation
between features typically results in higher VIF values for
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those features. If two features are highly correlated, the R-
squared value in the VIF calculation will be high, leading to
a higher VIF value.

In this paper the antennas’ radiation pattern were isotropic.
As a further work, we plan to conduct experiments with other
radiation patterns of the antenna. A further improvement area
is the increase of the accuracy of the results by involving
real-world data through additional experiments. An additional
further improvement will be adding uncertainty estimation
into the deep learning model, as a structure that provides both
position and uncertainty may offer more robust performance
compared to models that only estimate position.
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