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MU-MIMO Receiver Design and Performance
Analysis in Time-Varying Rayleigh Fading

Gábor Fodor , Senior Member, IEEE, Sebastian Fodor, and Miklós Telek

Abstract—Minimizing the symbol error in the uplink of
multi-user multiple input multiple output systems is impor-
tant, because the symbol error affects the achieved signal-to-
interference-plus-noise ratio (SINR) and thereby the spectral
ef�ciency of the system. Despite the vast literature available
on minimum mean squared error (MMSE) receivers, previously
proposed receivers for block fading channels do not minimize
the symbol error in time-varying Rayleigh fading channels.
Speci�cally, we show that the true MMSE receiver structure
does not only depend on the statistics of the CSI error, but also
on the autocorrelation coef�cient of the time-variant channel.
It turns out that calculating the average SINR when using the
proposed receiver is highly non-trivial. In this paper, we employ
a random matrix theoretical approach, which allows us to derive
a quasi-closed form for the average SINR,which allows to obtain
analytical exact results that give valuable insights into how the
SINR depends on the number of antennas, employed pilot and
data power and the covariance of the time-varying channel.
We benchmark the performance of the proposed receiver against
recently proposed receivers and �nd that the proposed MMSE
receiver achieves higher SINR than the previously proposed
ones, and this bene�t increases with increasing autoregressive
coef�cient.

Index Terms—Multiple input multiple output, estimation
theory, random matrix theory, autoregressive (AR) processes,
receiver design.

I. I NTRODUCTION

T HE wireless channels in the uplink of multiuser multiple
input multiple output (MU-MIMO) systems can often be

advantageously modelled as autoregressive (AR) processes,
because AR channel models capture the time-varying (aging)
nature of the channels and facilitate channel estimation and
prediction [1]–[13]. These papers have shown that exploiting
the autoregressive structure of the time-varying Rayleigh fad-
ing channel improves the performance of both single input sin-
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gle output (SISO) and multiple input multiple output (MIMO)
channel estimators and receivers. The basic rationale for these
papers is that in a Rayleigh fading environment, based on the
associated Jakes process, an AR model can be built, which
allows one to employ Kalman �lters for estimating and pre-
dicting the channel state. Speci�cally, papers [2], and [4]–[6]
consider SISO systems and exploit the memoryful property of
the AR process for joint channel estimation, equalization and
data detection.

Some early works on multiple-antenna receiver design and
performance analysis are reported in [1] and [3]. The opti-
mal array receiver algorithm forbinary phase-shift keying
(BPSK) signals is designed in [1], while [3] is concerned
with the blind estimation anddetection of space-time coded
symbols transmitted over time-varying Rayleigh fading chan-
nels. More recently, in the context of massive MU-MIMO
systems, [7]–[13] addressed the problem of channel aging and
derived channel estimation, prediction and multi-user receiver
algorithms that operate in an AR Rayleigh-fading environment
and use Kalman �lters or machine learning algorithms for
channel prediction.

A closely related line of research, in block fading environ-
ments, applies results from random matrix theory to establish
the deterministic equivalent of the random wireless system
in order to calculate the signal-to-interference-plus-noise ratio
(SINR) in the uplink and downlink ofMU-MIMO systems
[14]–[23], [25], [26]. In particular, in papers [20]–[22] it was
shown that the capacity of multicell MU-MIMO networks
grows inde�nitely as the number of antennas tends to in�nity,
if appropriate multicell minimum mean squared error (MMSE)
processing is used.

Generalizing the downlink (DL) precoding and uplink (UL)
receiver structures and associated deterministic equivalent
SINR results developed in these papers to AR time-varying
environments and channel aging is not trivial, because of
the basic assumption on independent channel realizations at
subsequent time instances. In contrast,papers [7], [8], [11],
[12], [19] treat AR channel evolution and use random matrix
theory to derive the deterministic equivalent and thereby the
SINR for the UL and DL of MU-MIMO systems. How-
ever, these papers do not develop a MU-MIMO receiver
that aims to minimize the mean squared error (MSE) of
the received data symbols.More recently, paper [24] devel-
oped a data-aided MSE-optimalchannel tracking scheme
and associated MMSE estimator of the data symbols in
the presence of channel aging, that is when the chan-
nel changes between the channel estimation time instance
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and the time instance when the channel is used for data
transmission.

In our recent work [13], we developed a new MMSE
receiver that treats interference as noise and uses an AR
model for its performance analysis (see Table I). The important
conclusion in [13] is that not only the channel estimation
procedure, but the receiver structure itself should be modi�ed
when the fading process is AR.

However, it is well-known that treating interference as noise
in MU-MIMO systems can severely degrade the performance
as compared with using the instantaneous channel estimates
of the interfering users, see the UL MU-MIMO receiver
structures used in, for example, [7], [8], [18], [23]. Speci�cally,
papers [18] and [23] proposed MMSE receivers in block
fading, whereas a maximum ratiocombining (MRC) and zero-
forcing (ZF) receiver in time-varying channels in the presence
of channel aging are used by [7] and [8] respectively. Note that
the conceptual difference between the MRC and ZF receivers
used in [7] and [8] and the MMSE receiver proposed in [13]
lies in the fact that the MMSE receiver actively takes into
account that the subsequent channel realizations are correlated
rather than adopting the MMSE receiver structure developed
for block fading channels. Therefore, we refer to the MMSE
receiver in [13] as an AR-aware receiver.

In the light of these works, it is natural to ask the following
two questions:

€ What is the MU-MIMO receiver that minimizes the MSE
of the received data symbols in time-varying Rayleigh
fading when all user channels are estimated and, there-
fore, the multiuser interference does not need to be treated
as noise?

€ Can we calculate the average SINR in the uplink of
MU-MIMO systems that employ the above receiver, as a
function of the number of MU-MIMO users and receive
antennas, employed pilot and data powers and large scale
fading?

Intuitively, �nding the answers to these questions implies
extending the results by (1) papers [18] and [23] (by general-
izing some of those block fading results to AR processes), (2)
papers [7] and [8] (by developing the optimal linear receiver in
MSE sense) and (3) paper [13] (by not treating the MU-MIMO
interference as noise and deriving an SINR formula rather
than using the MSE as a performance metric). Consequently,
the objective of the present paper is to devise a MU-MIMO
receiver that utilizes the channel estimates of each user and the
fact that subsequent channel coef�cients are correlated in time.
In other words, we propose and analyze a MU-MIMO receiver
that is optimal in the presence of channel state information
(CSI) errors when the channel evolves in time according
to a Rayleigh fading autocorrelation process. It is also our
objective to derive an average SINR formula that can serve as
a basis for rate optimization schemes in future works. Thus,
our contributions to the existing literature summarized above
and in Table I are two-fold:

1) Calculating the deterministic equivalent SINR of the
MU-MIMO MMSE receiver proposed in Proposition 1,
by proving Proposition 2, Theorem 2, whose proof is

based on Theorem 1 and Corollary 1, is our main and
novel result. To the best of our knowledge, Theorem 1,
Lemma 4 (needed for Theorem 1) and Theorem 2 have
not been published before.

2) We would like to emphasize the usefulness of Propo-
sition 3, which gives a straightforward computation of
the optimum pilot power in a MU-MIMO AR Rayleigh
fading environment as a root of a quartic equation.

Our analytical (based on Theorem 2 and Proposition 3) and
simulation results (comparing the performance of the different
MU-MIMO receivers listed in Table IV) indicate that the
proposed AR-aware receiver outperforms earlier AR receivers
in terms of the achieved SINR, such as those proposed by
Truong and Heath [7] and our own previously proposed
scheme in [13].

The paper is organized as follows. The next section
describes our system model, which is similar to that used in,
for example [13], [18] or [7]. Section III derives the MMSE
receiver for autoregressive Rayleigh fading channels, stated as
Proposition 1. Section IV derives our key result, Theorem 2,
which can be considered as an extension of the SINR results
in [18] and [23] to AR processes. The important feature of
this implicit SINR formula is that it does not require to solve
a system of equations or �xed point iterations due to the fact
that the implicit equation has a unique positive solution. Also,
Subsection IV-D derives the optimum pilot power in single-
user multiple input multiple output (SU-MIMO) systems or in
MU-MIMO systems, in the special case when the large scale
fading components of all users are equal. The treatment of the
optimum pilot power in the general MU-MIMO case is left
for future work. Section V discusses numerical results, and
Section VI draws conclusions.

II. SYSTEM MODEL

A. Uplink Signal Model

We consider a single cell MU-MIMO system, where the
base station (BS) is equipped withNr receive antennas, and
there areK uplink mobile stations (MSs). (Note that typically
K � Nr .) The MSs facilitate channel state information at
the receiver (CSIR) acquisition at the BS using orthogonal
complex sequences, such as the Zadoff-Chu sequences, de�ned
ass �

�
s1, . . . , s� p

� T
� C� p × 1. These pilot sequences satisfy

|si |2 = 1 , for i = 1 , .., � p [27]. To enable spatial multiplexing,
the length of the pilot sequences� p is chosen such that a
maximum ofK users can be served simultaneously, implying
that � p � K holds. In this MU-MIMO system,� p subcarriers
are used to construct the pilot sequences at each MS, and� d

subcarriers are used to transmit data symbols. Each MS has a
total power budgetPtot, imposing the constraint� pPp + � dP =
Ptot, whereP is the transmit andPp denotes the pilot power.
The trade-off between pilots and data signals as implied by
the sum pilot and data power constraint has been studied by
several previous works, see for example [28], [29]. In this
paper, User-1 is the tagged user, while indexes2. . . K are used
to denote the interfering users from the tagged user’s point of
view. Consequently, the received pilot signal transmitted by
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TABLE I

OVERVIEW OF RELATED L ITERATURE

User-1 at the BS takes the form of [13]:

Y p(t) = �
�

Pph(t)sT + N (t) � CN r × � p , (1)

where h(t) � CN r × 1 � CN (0, C), that is, h(t) is a
complex normal distributed column vector with mean vector0
and covariance matrixC. Furthermore,� denotes large scale
fading, andN � CN r × � p is the additive white Gaussian noise
(AWGN) with element-wise variance� 2

p.

B. Channel Model

In this paperh denotes the complex channel which is mod-
eled as a stationary discrete time AR(1) process as in [4], [5],
and [13]. This model can be seen as a generalization of the
block fading channel model:h(t) = Ah (t Š 1) + � (t) �

CN r × 1, where � (t) � CN (0, � ) is the process noise vec-
tor and A denotes the state transition matrix of the AR(1)
process [3]. In this paper we will use this AR(1) model to
approximate the Rayleigh fading channel. We remark that the
parameters of the AR(1) model can be identi�ed by existing
methods, such as those reported in [30]–[32]. Due to the
stationarity ofh(t) we haveC = ACA H + � .

C. Data Signal Model

ConsideringK MU-MIMO users, the received data signal
at the BS at timet is [13]:

y (t)= � h(t)
�

P x(t)
� �� �

tagged user

+
K	

k=2

� k hk (t)
�

Pk xk (t)

� �� �
other users

+ nd(t), (2)
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where y(t) � CN r × 1; and � k hk (t) � CN r × 1 denotes the
channel vector, andxk (t) is the data symbol of User-k
transmitted at timet with power Pk . Furthermorend(t) �
CN



0, � 2

dI N r

�
is the AWGN, whereI N r denotes the identity

matrix of sizeNr .

D. Channel Estimation

To acquire CSIR, the MSs transmit orthogonal pilot
sequences, and the BS uses MMSE channel estimation based
on (1). For algebraic convenience we de�ne

�Y p(t) = vec(Y p(t)) = �
�

PpSh(t) + �N (t), (3)

where vec is the column stacking vector operator,
�Y p(t), �N (t) � C� p N r × 1 and S � s � I N r � � pNr × Nr ) is
such thatSH S = � pI N r .

Lemma 1: The MMSE channel estimator approximates the
AR(1) channel based on the latest and the previous channel
statesas

�hMMSE(t) =
�
C AC

�
�

� 2
p

� 2Pp� p
I 2N r + M


 Š 1

×

�

h̄(t) +
1

�
�

Pp� p
n̄(t)




, (4)

where M =
�

C AC
CA H C

�
, h̄(t) =

�
h(t)

h(t Š 1)

�
and n̄(t) =

�
sH N (t)

sH N (t Š 1)

�
.

The proof is in Appendix A.
Corollary 1: The estimated channel�hMMSE is a circular

symmetric complex normal distributed vector�hMMSE(t) �
CN(0, R MMSE), with

R MMSE = Eh ,n { �hMMSE(t) �hH
MMSE(t)}

=
�
C AC

�
�

� 2
p

� 2Pp� p
I 2N r + M


 Š 1 �
C

CA H

�

=
�

C AC
�

�
C + � AC
CA H C + �

� Š 1 �
C

CA H

�
, (5)

where� �
� 2

p

� 2 Pp � p
I N r .

We note that (5) is obtained from (4) using
Eh ,n { h̄(t)h̄(t)H } = M and Eh ,n { n̄(t)n̄(t)H } = � p� 2

p I 2N r .
According to Corollary 1 andh(t) � CN (0, C), the
covariance matrix of the channel estimation noise when using
the MMSE channel estimation is:Z = C Š R MMSE, which is
identical with the LS case discussed in [13], and wetherefore
omit the MMSE subscript in the sequel.

Lemma 2: The channel realizationh(t) conditioned on the
current and previous estimates�h(t) and �h(t Š 1) is normally
distributed as follows:

�
h(t)

�
�
� �h(t), �h(t Š 1)

�
� E� (t) + CN

�
0, Z

�

� �� �
channel estimation noise

, (6)

TABLE II

SYSTEM PARAMETERS

where for� t

� (t) �
� �h(t)

�h(t Š 1)

�
� C2N r × 1,

E �
�

C AC
�

�
C + � AC
CA H C + �

� Š 1

� CN r × 2N r ,

(7)

Z � C Š E
�

C
CA H

�
� CN r × N r , and

Cov
�

� (t)
�

=
�

C + � AC
CA H C + �

�
� C2N r × 2N r . (8)

The proof is in [13].

E. Summary

This section described the system model consisting of a
signal model and an MMSE channel estimation scheme. When
the channel estimation is based on the current and previous
channel observations (i.e.�h(t) and �h(t Š 1)), the conditional
distribution of h is complex normal with mean vector and
covariance matrix according to Lemma 2, which serves as a
starting point for deriving the optimal MU-MIMO receiver in
the sequel.

III. D ERIVING THE MMSE RECEIVER FOR

TIME-VARYING RAYLEIGH FADING CHANNELS

The BS the transmitted data symbols by employing a linear
MMSE receiver G � C1× N r , which minimizes the MSE
between the transmitted symbolx and the estimated symbol
Gy :

G � � argmin
G

Eh ,n ,x {| Gy Š x|2} � C1× N r . (9)

When the BS employs a naive receiver, it assumes perfect
channel estimation, and uses the estimated channel in place of
the actual channel:

G naive = �
�

P �hH (� 2P �h �hH + � 2
d I N r )Š 1. (10)

As we shall see, the naive receiver fails to minimize the
MSE.
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Next, we derive the MMSE receiver vectorG � that the
receiver at the BS should use to minimize the MSE of the
received data symbolx of the tagged user based on the data
signal y . Since the BS can only use the estimated channels,
the objective function of this minimization must only depend
on the estimated channels�h(t) and �h(t Š 1). This MMSE
receiver can be contrasted to the naive receiver, which assumes
that perfect CSIR is available.

The MSE of the received data symbols, as a function of the
generic linear receiverG and the actual propagation channels
h, was shown to have the following form [33]:

MSE


G, H

�
= Ex, n d

�
|Gy Š x|2

�
=

�
�
�G � h

�
P Š 1

�
�
�
2

+
K	

k=2

Pk |G � k hk |2 + � 2
dGG H

= 1 Š �
�

PGh Š �
�

PhH G H

+ G

�
K	

k=1

� 2
k Pk hk hH

k + � 2
d I N r




G H ,

(11)

where H = [ h1, . . . , hK ] � CN r × K collects the complex
channel vector for each of theK users. We now seek to
express the MSE as a function ofG and the estimated
channel �H (t), �H (t Š 1), rather than the actual channelH ,
where the �H (t) and �H (t Š 1) matrices collect the esti-
mated channels. To achieve this, we average the MSE over�

hk | �hk (t), �hk (t Š 1)
�

and obtain:

MSE
�

G, �H (t), �H (t Š 1)
�

= EH | �H ( t ) , �H ( t Š 1) { MSE(G, H )}

= 1 Š �
�

PGE � Š �
�

P � H EH G H

+ G

�
K	

k=1

� 2
k Pk

�
Ek � k � H EH

k + Zk

�
+ � 2

dI N r




G H ,

(12)

where the� (t) vector andE andZ matrices, associated with
the tagged user, were introduced in Lemma 2, and� k (t), Ek

andZk are the corresponding terms associated with userk.
We can now obtain the following proposition:
Proposition 1: TheMU-MIMO MMSE receiver vector is

given by:

G � (t)= argmin
G

MSE
�

G, �H (t), �H (t Š 1)
�

= bH (t)JŠ 1(t),

(13)

whereb(t) � CN r × 1 and J(t) � CN r × N r are de�ned as

b(t) � �
�

PE� (t), (14)

J(t) �
K	

k=1

� 2
k Pk

�
Ek � k (t)� H

k (t)EH
k + Zk

�
+ � 2

d I N r . (15)

Equation (13) is a quadratic optimization problem and the
proposition presents its solution. Speci�cally, Proposition 1
states that the MU-MIMO MMSE receiver utilizes the esti-
mated channels of all users at both timet andt Š 1, and the

Ek andZk matrices that were derived in Lemma 2. To analyze
the performance of this MU-MIMO receiver, the next section
uses the results of this section as a starting point, and will
calculate the average SINR, as the main result of this paper,
using random matrix theory.

IV. CALCULATING THE SINR OF THE RECEIVED

DATA SYMBOLS

A. Determining the Instantaneous SINR WithG �

Based on the received signaly , the BS employs the linear
receiverG to estimate the transmitted symbol of the tagged
user as:�x = Gy . The expected energy of�x, conditioned on
 �H (t), �H (t Š 1)

�
, is expressed as:

Ex, nd ,H | �H ( t ) , �H ( t Š 1)

�
| �x|2

�

= � 2P|GE � (t)|2

+
K	

k=2

� 2
k Pk |GE k � k (t)|2 +

K	

k=1

� 2
k Pk GZ k G H

� �� �
ch. estim. noise

+� 2
dGG H .

We can now state the following lemma, which determines
the instantaneous SINR.

Lemma 3: Assume that the receiver employsMMSE symbol
estimation. Then the instantaneous SINR of the estimated data
symbols,�

�
G � , �H (t), �H (t Š 1)

�
is given as:

�
�

G � (t), �H (t), �H (t Š 1)
�

= � 2P � H (t)EH JŠ 1
1 (t)E� (t),

(16)

whereJ1(t) � J(t) Š � 2PE� (t)� H (t)EH .
The lemma is obtained whenG � (t) (c.f. (13)) is substituted
into (16).

B. Calculating the Average SINR

To calculate the average SINR, we �rst make the following
considerations. According to (14),bk (t) = � k

�
Pk Ek � k (t).

that is bk � CN (0, � k ), where,� k can be calculated using
the covariance matrix� in (8) as:

� k = � 2
k Pk Ek

�
Ck + � k A k Ck

Ck A H
k Ck + � k

�
EH

k

= � 2
k Pk Ek

�
Ck

Ck A H
k

�
. (17)

Notice that:

J1(t) = J(t) Š � 2PE� (t)� H (t)EH

=
K	

k=2

bk bH
k

� �� �
� BB H

+
K	

k=1

� 2
k Pk Zk + � 2

d I N r

� �� �
� �

, (18)

where � � CN r × N r is a constant matrix (with measurable
elements) and thebk vectors are characterized by the�hk (t),
�hk (t Š 1) estimated channels. Substitutingbk in (16) yields

�
�

G � (t), �H (t), �H (t Š 1)
�

= bH 

BB H + �

� Š 1
b, (19)
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where we recall that we drop the index of the tagged user
(User-1), that isb � b1. For block fading channels, ref-
erence [18] suggests that the deterministic equivalent of the
SINR is a good approximation of the average SINR in the
MU-MIMO system when the number of antennas is greater
than a certain number. This result motivates us to determine the
deterministic equivalent SINR also for our system, in which
the channels evolve according to an AR process. As we shall
see, the deterministic equivalent is a good approximation of the
average SINR also in our case. To this end, we can now state
the following proposition, whichcalculates the deterministic
equivalent SINR for AR channels.

Proposition 2: Assume that

Nr 	 
 and lim sup
N r ��

K/N r < 
 ,

then, for the instantaneous SINR of the tagged user, denoted
as � , the following holds:

� Š tr
�

�T
�

a.s.ŠŠŠŠŠ	
N r ��

0, (20)

whereT is de�ned as

T �

�
1

Nr

K	

k=2

� k

1 + � k
+ �


 Š 1

, (21)

and � k , for k = 2 , . . . , K are the solution of the equation
system de�ned by:

� k =
1

Nr
tr

�

� � k

�
1

Nr

K	

� =2

� �

1 + � �
+ �


 Š 1
�

� . (22)

Proof: The proof is in Appendix B. �
Note that According to [18],� k (k = 2 , . . . , K ) can be

obtained by �xed point iteration starting from� k = 1 /� 2
d

(k = 2 , . . . , K ). Based on the above proposition, for �nite
N , we can write that:

�̄ � tr
�

�T
�

. (23)

It is worth noting that determining the average SINR for
a single user requires to solve the above system of equa-
tions, because calculating� k for k = 1 is intertwined with
calculating the� k :s for k = 2 . . . K in (22). This observation
motivates us to seek an alternative solution, according to which
calculating the SINR for the tagged user does not require to
solve a system of equations. We note that a more restricted
special case assuming identical user settings for the block
fading model was studied in [18].Regarding the complexity
of determining the SINR and the number of iterations needed,
we make the following observation.

Observation 1: The complexity of one iteration of the �xed
point iteration algorithm used to solve the system ofK Š 1
equations(22) is O(KN 2.37

r ) and the number of iterations
needed in order to get an estimate of the SINR with error less
than or equal to some� is O(log(1/� )) . In conclusion, the
time complexity of the �xed point iteration algorithm used to
�nd the SINR of one user isO(KN 2.37

r log(1/� )) .
Proof: It is shown in [34], that the system of equations

in Proposition 2 has a unique positive solution and the �xed

point iteration converges to this solution when it is started
from the initial point � k = 1 /� 2

d(k = 2 , . . . , K ). Regarding
the complexity of the iteration, notice thaton theright hand
side of (22) the term that is inverted is the same for every value
of k, and needs to be computed onceduring every iteration
step. To compute this term,we need to addO(K ) number
of Nr × Nr matrices, and hence the complexity isO(KN 2

r ).
Next, to invert this term, we use the well-known Coppersmith-
Winograd algorithm of complexityO(N 2.37

r ). We can now
calculate the matrix product inside the trace operation for every
K ; once again using the Coppersmith-Winograd algorithm,
this step has complexityO(KN 2.37

r ). Finally, computing the
trace for each k has complexityO(KN r ). In conclusion,
the complexity of one iteration step isO(KN 2

r + N 2.37
r +

KN 2.37
r + KN r ) = O(KN 2.37

r ). Regarding the number of
iterations needed, by equation (111) in [34], the� k converges
exponentially to the �xed point.Consequently, the number
of iterations needed to reach precision� is O(log(1/� )) .
In conclusion, calculating the SINR of a single user in a
system withK users andN antennas, to a precision of� ,
is O(KN 2.37

r log(1/� )) .
�

By the numerical experiments reported in Section V,
we found that the procedure converges in less than 10 iter-
ations in all investigated scenarios.

C. Calculating the Average SINR in the Case of Independent
and Identically Distributed Channel Coef�cients

If the Nr antennas are suf�ciently spaced apart, the corre-
lation matrix Ck of the channel of User-k can be assumed
to be of the form ofCk = ck I N r . Additionally using� k =

sk I N r =
� 2

p

� 2
k Pp,k � p,k

I N r , based on the de�nition ofEk in (7)
we have:

Ek =
�

�ek I N r �ek I N r

�
� CN r × 2N r , (24)

where:

�ek =
ck (ck + sk Š ak ck a�

k )
ck (ck + sk Š ak ck a�

k ) + sk (ck + sk )
, and

�ek =
ak ck sk

(ck + sk )2 Š ak c2
k a�

k
. (25)

Furthermore, due to the de�nition ofZk in (8), we have
that Zk = zk I , where

zk =
ck sk (ck + sk Š ak ck a�

k )
(ck + sk )2 Š ak c2

k a�
k

. (26)

Additionally,

� k = � k I N r , with � k = � 2
k Pk (�ek ck + �ek ck a�

k ). (27)

From (24) and the de�nition ofbk (t) in (14), we get:

bk (t) = � k

�
Pk

�
�ek �hk (t) + �ek �hk (t Š 1)

�
� CN r × 1.

(28)

Using these de�nitions, the constant matrix� in the
SINR expression of the tagged user (in (19)) becomes:
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� = 	 I N r , where : 	 �
� K

k=1 � 2
k Pk zk + � 2

d . The average
SINR for the tagged user(k = 1) is then calculated as:

�̄ = Eb k ,k =1 ...K

�
�

�
bH

�
K	

k=2

bk bH
k + 	 I N r


 Š 1

b

�
 

!
, (29)

To calculate the average SINR,notice that random matrices
of the formvv H (a.k.a. random dyads) withv � CN (0, 
 I n )
(where n is large) play a central role in (29). It has been
shown in several important works in the �eld of random
matrices, that the asymptotic distribution of the eigenvalues
can be advantageously used to deal with such matrices [14],
[16], [35]. In particular, the Stieltjes transform is often used
to characterize the asymptotic distribution of the eigenvalues
of large dimensional random matrices [14], [34], [35]. As it
is discussed in details in [14], [16], [17], and [36], from a
wireless communications standpoint, the Stieltjes transform
can be used to characterize the SINR of multiple antenna
communication models, including the MU-MIMO interference
broadcast and multiple access channels. The Stieltjes transform
of random variableX with cumulative cistribution function
(CDF) PX (x) is de�ned as

GX (s) � E
"

1
X Š s

#
=

$

x

1
x Š s

dPX (x). (30)

TheR-transform is closely related to the Stieltjes transform
by the following relation

R X (s) � GŠ 1
X (Šs) Š

1
s

, (31)

where GŠ 1(Šs) denotes the inverse function of the Stielt-
jes transform [35]. TheR-transforms are commonly used
to provide approximations of capacity expressions in large
dimensional systems, see e.g. [35], [37]. In the present work,
the relationship between the Stieltjes andR-transforms will be
used to provide a deterministic approximation of the average
SINR in 29. The main reason for using theR-transform
is its additive property, according to whichR X + Y (s) =
R X (s)+ R Y (s). To calculate the deterministic approximation,
we �rst prove an important theorem, which, together with its
corollary concerning theR-transform of random dyads of the
type vv H will be important in calculating the average SINR
in the sequel.

Theorem 1: Let
 i be a bounded sequence
 i < 
 max such
that

lim
n ��


 1 + 
 2 + · · · + 
 n

n
= 
̄. (32)

Furthermore, letv (n ) be a sequence of complex normal
distributed random vectors with0 means and covariances
R n = diag(
 1, 
 2, . . . 
 n ). Denote by� n a randomly selected
eigenvalue of the dyadv (n )



v (n )

� H
. Thenthe limit of theR-

transform of the distribution of� n is given as follows:

lim
n ��

R � n

� s
n

�
=


̄
1 Š s
̄

. (33)

Proof: The proof is in Appendix C. �

From Theorem 1, the following result is immediate:
Corollary 2: Let the vector v � CN (0, 
 I n ). The

R-transform of the distribution of a randomly selected eigen-
value ofvv H , denoted by� n is asymptotically equal to:

lim
n ��

R� n

� s
n

�
=



1 Š s


. (34)

For �nite n, Corollary 2 gives the approximationR� n (s) �
�

1Š ns� , which we will use in our proof of Theorem 2. The
following theorem, which is our main result, states the average
SINR in the presence of a per user total power budget.

Theorem 2: The asymptotic average SINR�̄ , that is �̄ as
Nr 	 
 , is the unique positive solution to the following
equation:

K	

k=1

� 2
k Pk zk + � 2

d

� �� �
	

=
Nr �

�̄
Š

K	

k=2

� k

1 + 
̄� k
�

. (35)

Proof: The proof is in Appendices D and E. Speci�cally,
we provide two alternative proofs to Theorem 2, both of which
rely on random matrix considerations, and have their own
merits. The �rst proof invokes the Stieltjes andR-transforms
of probability distributions (Appendix D), while the second
proof (Appendix E) uses the results in [34] and relies on
a matrix trace approximation as in the lemmas invoked by
both [7] and [18]. �

Notice that the� k :s in Theorem 2 can be easily calculated
by means of (27), as long as the covariances matrices of the
channels (Ck ) and the transition matrices of the autoregressive
process that characterize the channels (A k ) are accurately
estimated. Therefore, the average SINR of the tagged user can
be calculated by solving (35), rather than solving a system of
equations as in Proposition 2. In the numerical section, we will
investigate the impact of AR parameter estimation errors on
the average SINR performance.

D. Optimum Pilot Power

In this subsection, we determine the optimum pilot power in
SU-MIMO systems and in MU-MIMO systems in the special
case when the large scale fading components of all users are
equal. By deriving a closed form expression for the optimum
pilot power, we learn that it does not depend on the number
of antennasNr . The treatment of the optimum pilot power in
the general case, in which the large scale fading components
are different is left for future work.

In the case in which each user has the same path loss� k =
� � k, channel covariance matrixCk = C = cI � k, and AR
parameterak = a � k, equation (35) of Theorem 2 simpli�es
to

	
�

=
Nr

�̄
Š

K Š 1
1 + �̄

. (36)

It follows from Theorem 2 that �nding the optimum pilot
power, which maximizes the average SINR in the SU-MIMO
case, that is whenK = 1 , is equivalent with maximizing
�
	 . In the MU-MIMO case (K > 1), we can �rst state the
following interesting result.
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Lemma 4: AssumeK > 1 and that each user employs the
same pilot-to-data power ratio, and, consequently, achieves
the same SINR. The optimum pilot and data powers are given
as the solution of the following maximization problem:

maximize
P,P p

�
	

subject toP � d + Pp� p = Ptot. (37)

Proof: The right hand side of (36) is strictly decreasing
in �̄ since

�
� �̄

%
Nr

�̄
Š

K Š 1
1 + �̄

&
= Š

Nr

�̄ 2 +
K Š 1

(1 + �̄ )2

<
ŠNr + K Š 1

�̄ 2 < 0. (38)

Hence,�̄ is strictly decreasing in the left hand side of (36)
with respect to	

� , from which the lemma follows. �
To get some intuition behind this Lemma, recall from

equation (17) that� is the expected power of the estimated
received data symbol. Furthermore,	 =

� K
k=1 � 2

k Pk zk + � 2
d,

that is the sum of the data powers times the channel estimation
errors and the power of the data symbol noise. Hence, the
ratio �/	 re�ects the ratio of the powers of the useful and the
non-useful information arriving at the receiver.

A consequence of this lemma is that the optimal pilot power
is invariant under the number of antennasNr , sinceNr does
not appear in the optimization problem 37. This observation
will be con�rmed in the numerical section (see Figure 4).

We now state the following proposition, which will provide
some useful insights in the impact of optimum pilot power
setting in the numerical section.

Proposition 3: In a MU-MIMO system, in which each user
has the same path loss, anda � R, the optimal pilot power
is a positive real root in the interval

�
0, Ptot

� p

�
of the following

quartic equation:

c0 + c1Pp + c2P2
p + c3P3

p + c4P4
p = 0 , (39)

where

c4 = ( a2 Š 1)2c3� 6(K� 2
p Š � 2

d� d)� 4
p ;

c3 = 2( a2 Š 1) c2� 4� 2
p((a2 Š 1) cKPtot� 2

Š K� p
2 + 2 � d

2 � d)� 3
p ;

c2 = c� 2� p
2((a2 Š 1)2c2KP 2

tot�
4 + � 2

p((1 + a2)

× K� p
2 + ( a2 Š 5)� 2

d � d)

+ ( a2 Š 1) cPtot� 2(4K� 2
p + ( a2 Š 1)� 2

d� d)� 2
p ;

c1 = Š2� 4
p((a2 Š 1) cPtot� 2 + � 2

p + a2� 2
p)

· (cKPtot� 2 + � 2
d� d)� p;

c0 = ( a2 + 1) Ptot� 6
p(cKPtot� 2 + � 2

d � d).

The proof is in Appendix F.

E. Summary

This section developed a method to calculate the average
SINR in MU-MIMO systems that use the receiver proposed
in Proposition 1. For the generalcase, when the antenna coef-
�cients are correlated, Proposition 2 gives the deterministic
equivalent of the SINR and, according to (23), it gives a good

Fig. 1. CDFs of the instantaneous SINR de�ned in (16) when using the
proposed AR-aware MMSE receiver (red solid line) and previously proposed
MU-MIMO receivers (see Table IV). Note the signi�cant gain as compared
with the AR-aware MU-MIMO receiver that treats interference as noise
proposed in [13] and with troung and heath (1), (2), (3) proposed in [7].

approximation of the average SINR when the number of anten-
nas is large. For the special case, when the channel coef�cients
are independent and identically distributed, Theorem 2 gives
the average SINR and, by further assuming the special case
of all users having the same large scale fading, the optimum
pilot power is given by Proposition 3. These results will be
veri�ed by simulations and illustrated by numerical examples
in the next section.

V. NUMERICAL RESULTS

To obtain numerical results, we study a single cell
MU-MIMO system, in which the MSs are equipped with a
single transmit antenna, while the BS is equipped withNr

receive antennas.
We study the case in which the channel coef�cients are

of the complex channel vector are independent and identi-
cally distributed as described in Subsection IV-C. The most
important parameters of this system that must be properly
set to generate numerical results using the SINR derivation
in this paper (utilizing Proposition 2 and Theorem 2) are
listed in Table III. To benchmark the performance of the pro-
posed MU-MIMO receiver, we use the conventional MMSE
receivers, see table IV. An AR-aware receiver was proposed
in our previous work [13], in which the receiver does not
utilize the instantaneous channel estimates of the interfering
users, but treats interference as noise through the channel
covariance matrices. In order to demonstrate the gain due to
using the channel estimate of each user, we compare the SINR
performance of the proposed MU-MIMO receiver in this paper
with that developed in [13]. We also use the MRC receiver that
was used in the context of channel aging by [7]. The MRC
receiver in [7] was used (1) with MMSE channel estimation
based on the current observation only, (2) with Kalman �lter
forecast and (3) channel prediction using ap-order Kalman
�lter. For benchmarking purposes, we will consider all three
variants of the scheme used by Troung and Heath in [7].

Figure 1 shows the CDF of the SINR of the tagged user
for the speci�c case when the number of users isK = 5 ,
number of receive antennas at the BS isNr = 100 and the pilot
power is kept �xed atPp = 100 mW. Notice that the proposed

Authorized licensed use limited to: KTH Royal Institute of Technology. Downloaded on October 26,2023 at 12:05:43 UTC from IEEE Xplore.  Restrictions apply. 
















