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Optimizing Pilot Spacing in MU-MIMO Systems
Operating Over Aging Channels

Sebastian Fodor , Gábor Fodor , Senior Member, IEEE, Doğa Gürgünoğlu , and Miklós Telek

Abstract— In the uplink of multiuser multiple input multiple
output (MU-MIMO) systems operating over aging channels,
pilot spacing is crucial for acquiring channel state information
and achieving high signal-to-interference-plus-noise ratio (SINR).
Somewhat surprisingly, very few works examine the impact
of pilot spacing on the correlation structure of subsequent
channel estimates and the resulting quality of channel state
information considering channel aging. In this paper, we consider
a fast-fading environment characterized by its exponentially
decaying autocorrelation function, and model pilot spacing as
a sampling problem to capture the inherent trade-off between
the quality of channel state information and the number of
symbols available for information carrying data symbols. We first
establish a quasi-closed form for the achievable deterministic
equivalent SINR when the channel estimation algorithm utilizes
multiple pilot signals. Next, we establish upper bounds on the
achievable SINR and spectral efficiency, as a function of pilot
spacing, which helps to find the optimum pilot spacing within
a limited search space. Our key insight is that to maximize
the achievable SINR and the spectral efficiency of MU-MIMO
systems, proper pilot spacing must be applied to control the
impact of the aging channel and to tune the trade-off between
pilot and data symbols.

Index Terms— Autoregressive processes, channel estimation,
estimation theory, multiple input multiple output, receiver design.

I. INTRODUCTION

IN WIRELESS communications, pilot symbol-assisted
channel estimation and prediction are used to achieve

reliable coherent reception, and thereby to provide a variety of
high quality services in a spectrum efficient manner. In most
practical systems, the transmitter and receiver nodes acquire

Manuscript received 31 December 2022; accepted 19 March 2023. Date
of publication 24 March 2023; date of current version 16 June 2023.
Gabor Fodor was partially supported by the H2020 Marie Skłodowska-
Curie Innovative Training Networks, GA Number: 956256, and also partially
supported by the Celtic Project 6G for Connected Sky, Project ID: C2021/1-9.
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and predict channel state information by employing predefined
pilot sequences during the training phase, after which informa-
tion symbols can be appropriately modulated and precoded at
the transmitter and estimated at the receiver. Since the elapsed
time between pilot transmissions and the transmit power level
of pilot symbols have a large impact on the quality of channel
estimation, a large number of papers investigated the optimal
spacing and power control of pilot signals in both single and
multiple antenna systems [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12].

Specifically in the uplink of multiuser multiple input mul-
tiple output (MU-MIMO) systems, several papers proposed
pilot-based channel estimation and receiver algorithms assum-
ing that the complex vector channel undergoes block fading,
meaning that the channel is constant between two subsequent
channel estimation instances [13], [14], [15], [16]. In the block
fading model, the evolution of the channel is memoryless
in the sense that each channel realization is drawn indepen-
dently of previous channel instances from some characteris-
tic distribution. While the block fading model is useful for
obtaining analytical expressions for the achievable signal-to-
interference-plus-noise ratio (SINR) and capacity [15], [17],
it fails to capture the correlation between subsequent channel
realizations and the aging of the channel between estimation
instances [6], [7], [11], [12].

Due to the importance of capturing the evolution of the wire-
less channel in time, several papers developed time-varying
channel models, as an alternative to block fading models,
whose states are advantageously estimated and predicted by
means of suitably spaced pilot signals. In particular, a large
number of related works assume that the wireless channel can
be represented as an autoregressive (AR) process whose states
are estimated and predicted using Kalman filters, which exploit
the correlation between subsequent channel realizations [3],
[4], [6], [10], [12]. These papers assume that the coefficients
of the related AR process are known, and the current and future
states of the process (and thereby of the wireless channel) can
be well estimated. Other important related works concentrate
on estimating the coefficients of AR processes based on
suitable pilot-based observations and measurements [18], [19],
[20]. In our recent work [12], it was shown that when an AR
process is a good model of the wireless channel and the AR
coefficients are well estimated, not only the channel estimation
can exploit the memoryful property of the channel, but also a
new MU-MIMO receiver can be designed, which minimizes
the mean squared error (MSE) of the received data symbols by
exploiting the correlation between subsequent channel states.
It is important to realize that the above references build on
discrete time AR models, in which the state transition matrix
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is an input of the model and can be estimated by some suitable
system identification technique, such as the one proposed
in [20]. However, these papers do not ask the question of
how often the channel state of an aging channel should be
observed by suitably spaced pilot signals to realize a certain
state transition matrix in the AR model of the channel.

Specifically, a key characteristic of a continuous time
Rayleigh fading environment is that the autocorrelation func-
tion of the associated stochastic process is a zeroth-order
Bessel function, which must be properly modelled [21], [22].
This requirement is problematic when developing discrete-
time AR models, since it is well-known that Rayleigh fading
cannot be perfectly modelled with any finite order AR pro-
cess (since the autocorrelation function of discrete time AR
processes does not follow a Bessel function), although the
statistics of an AR process can approximate those of Rayleigh
fading [23], [24].

Recognizing the importance of modeling fast fading, includ-
ing Rayleigh fading, channels with proper autocorrelation
function as a basis for pilot spacing optimization, papers [25]
and [26] use a continuous time process as a representation
of the wireless channel, and address the problem of pilot
spacing as a sampling problem. According to this approach,
pilot placement can be considered as a sampling problem of
the fading variations, and the quality of the channel estimate
is determined by the density and accuracy of channel sam-
pling [26]. However, these papers consider single input single
output (SISO) systems, and are not applicable to MU-MIMO
systems employing a minimum mean squared error (MMSE)
receiver, which was proposed in, for example, [12]. On the
other hand, paper [6] analyzes the impact of channel aging on
the performance of multiple input multiple output (MIMO)
systems, without investigating the interplay between pilot
spacing and the resulting state transition matrix of the AR
model of the fast fading channel. Since that paper proposes
three important channel estimation and prediction schemes
and establishes closed forms for the deterministic equivalent
SINR [6], it serves as the benchmark for the pilot spacing
algorithm proposed in the present paper.

In this paper, we are interested in determining the average
SINR in the uplink of MU-MIMO systems operating in
fast fading as a function of pilot spacing, pilot/data power
allocation, number of antennas and spatially multiplexed users.
Specifically, we ask the following two important questions,
which are not answered by previous works:

• What is the average SINR in a closed or quasi-closed
form in the uplink of MU-MIMO systems in fast fading
in the presence of antenna correlation? How does the
average SINR depend on pilot spacing and pilot/data
power control?

• What is the optimum pilot spacing and pilot/data power
allocation as a function of the number of antennas and the
Doppler frequency associated with the continuous time –
modeled as a piece-wise constant – fast fading channel?

In the light of the above discussion and questions, the
main contributions of the present paper, which are provided
in Sections IV and V, are as follows:

• Theorem 1 and Proposition 2 establish an upper bound
on the achievable SINR as a function of pilot spacing,
which is instrumental for determining the optimum pilot
spacing.

• Proposition 3, building on Proposition 2, provides an
upper bound on the average achievable spectral efficiency,
which is instrumental in limiting the search space for the
optimal frame size as a function of the Doppler frequency.

In addition, we believe that the engineering insights drawn
from the numerical studies are useful when designing pilot
spacing, for example in the form of determining the number of
reference signals in an uplink frame structure, for MU-MIMO
systems.

Specifically, to answer the above questions, we proceed as
follows. In the next section, we present our system model,
which admits correlated wireless channels between any of the
single-antenna mobile terminal and the receive antennas of the
base station (BS). Next, in Section III, we apply well-known
results developed for block fading channels in [15], [27], [28],
[29], and [30] to the system model developed in Section II.
Section IV studies the impact of pilot spacing on the achiev-
able SINR and the spectral efficiency (SE) of all users in
the system, and establishes an upper bound on this SINR.
We show that this upper bound is monotonically decreasing
as the function of pilot spacing. This property is very useful,
because it enables to limit the search space of the possible
pilot spacings when looking for the optimum pilot spacing in
Section V. That section also considers the special case when
the channel coefficients associated with the different receive
antennas are uncorrelated and identically distributed. It turns
out that in this special case a simplified SINR expression can
be derived. Section VI presents numerical results and discusses
engineering insights. Finally, Section VII draws conclusions.

In this paper we use the notation [v]n = wn and [A]n,m =
Bn,m to denote the elements of the block vectors and block

matrices v =

w1

...
wN

, A =

B1,1 . . . B1,M

...
. . .

...
BN,1 . . . BN,M

, respectively.

II. SYSTEM MODEL

A. Uplink Pilot Signal Model

By extending the single antenna channel model of [25],
each transmitting mobile station (MS) uses a single time slot
to send F pilot symbols, followed by ∆ time slots, each of
which containing F data symbols according to Figure 1. Each
symbol is transmitted within a coherent time slot of duration
T . Thus, the total frame duration is (1 + ∆)T , such that each
frame consists of 1 pilot and ∆ data time slots, which we will
index with i = 1 . . . ∆. User-k transmits each of the F pilot
symbols with transmit power Pp,k, and each data symbol in
slot-i with transmit power Pk(i), k = 1 . . . K. To simplify
notation, in the sequel we tag User-1, and will drop index
k = 1 when referring to the tagged user.

Assuming that the coherence bandwidth accommodates at
least F pilot symbols, this system allows to create F orthog-
onal pilot sequences. To facilitate spatial multiplexing and
channel state information at the receiver (CSIR) acquisition
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Fig. 1. Pilot (P) and data (D) symbols in the time-frequency domains of the
system in the (0, (∆+1)T ) interval. The solid line above the time-frequency
resource grid represents the piece-wise constant complex channel h(t), while
the dashed line represents the MMSE channel estimate ĥ(t). Notice that in
each time slot of length T all symbols are either pilot or data symbols. This
arrangement is used by the block type pilot allocation in 4G and 5G systems.

at the BS, the MSs use orthogonal complex sequences, such
as shifted Zadoff-Chu sequences of length τp = F , which we
denote as:

s ≜
[
s1, . . . , sτp

]T ∈ Cτp×1, (1)

whose elements satisfy |si|2 = 1. Under this assumption, the
system can spatially multiplex K ≤ F MSs. Focusing on
the received pilot signal from the tagged user at the BS, the
received pilot signal takes the form of [12]:

Y(t) = α
√

Pph(t)sT + N(t) ∈ CNr×τp , (2)

where h(t) ∈ CNr×1 ∼ CN (0,C), that is, h(t) is a complex
normal distributed column vector with mean vector 0 and
covariance matrix C ∈ CNr×Nr . Furthermore, α denotes large
scale fading, Pp denotes the pilot power of the tagged user, and
N(t) ∈ CNr×τp is the additive white Gaussian noise (AWGN)
with element-wise variance σ2

p.
It will be convenient to introduce Ỹ(t) by stacking the

columns of Y(t) as:

Ỹ(t) = vec
(
Y(t)

)
= α

√
PpSh(t) + Ñ(t) ∈ CτpNr×1,

(3)

where vec is the column stacking vector operator, Ỹ(t),
Ñ(t) ∈ CτpNr×1 and S ≜ s ⊗ INr

∈ CτpNr×Nr is such
that SHS = τpINr

, where INr
is the identity matrix of size

Nr.

B. Channel Model

In (2), the channel h(t) evolves according to a multivariate
complex stochastic process with stationary covariance matrix
C. That is, for symbol duration T , the channel (h(t)) evolves
according to the following AR process:

h(t + T ) = Ah(t) + ϑ(t), (4)

where the transition matrix of the AR process is denoted
by A, and ϑ(t) ∼ CN (0,Θ) denotes the random process
noise vector with zero mean and Θ covariance matrix. This
AR model has been commonly used to approximate Rayleigh
fading channels in e.g. [31]. Equation (4) implies that the
autocorrelation function of the channel process is:

E
(
h(t)hH(t + iT )

)
= C

(
AH

)i
, ∀i. (5)

Consequently, the autocorrelation function of the fast fading
channel (h(t)) is modelled as:

R(i) ≜ E
(
h(t)hH(t + iT )

)
=

{
CeQH iT if i ≥ 0,

Ce−QiT if i < 0,
(6)

where matrix Q describes the correlation decay, such that:
eQT = A. From (6), we have R(i) = RH(−i). Similarly, for
user k,

Rk(i) ≜ E
(
hk(t)hH

k (t + iT )
)

=

{
CkeQH

k iT if i ≥ 0,

Cke−QkiT if i < 0,

(7)

In each pilot slot, the BS utilizes MMSE channel estimation
to obtain the channel estimate of each user, as it will be
detailed in Section III. Without loss of generality, to simplify
the notation, hereafter we assume that the time unit is T and
iT = i.

C. Data Signal Model

When spatially multiplexing K MU-MIMO users, the
received data signal at the BS at time t is [12]:

y(t) = αh(t)
√

Px(t)︸ ︷︷ ︸
tagged user

+
K∑

k=2

αkhk(t)
√

Pkxk(t)︸ ︷︷ ︸
co-scheduled MU-MIMO users

+nd(t), (8)

where y(t) ∈ CNr×1; and xk(t) denotes the transmitted
data symbol of User-k at time t with transmit power Pk.
Furthermore, nd(t) ∼ CN

(
0, σ2

dINr

)
is the AWGN at

the receiver. Since each slot contains either only pilot or
data symbols, the pilot and data power levels can be set
independently.

III. OVERVIEW OF PREVIOUS RESULTS AND
PREREQUISITES

In this section, we are interested in
• calculating the MMSE estimation of the channel in each

data slot 1 ≤ i ≤ ∆, based on received pilot signals, as a
function of the frame size corresponding to pilot spacing
(see ∆ in Figure 1), and

• determining the slot-by-slot SINR of a tagged user (γ̄(i))
of a MU-MIMO system operating over fast fading chan-
nels modelled as AR processes.

To this end, we apply well-known results developed for
block fading channels in [15], [27], [28], [29], and [30] to
the system model developed in the previous section.

Estimating the channel at the receiver can be based on
multiple received pilot signals both before and after the actual
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data slot i. While using pilot signals that are received before
data slot i requires to store the samples of the received pilot,
using pilot signals that arrive after data slot i requires to store
the received data signals and necessarily induces some delay
in estimating the transmitted data symbol.

In the sequel we use the general case of “p before, q after”
to illustrate the operation of the MMSE channel estimation
scheme, that is when the receiver uses the p pilot signals Ỹ(0),
Ỹ
(
−(∆+1)

)
. . . Ỹ

(
−(p−1)(∆+1)

)
before the data slot and

the q pilot signals Ỹ(∆ + 1), Ỹ
(
2(∆ + 1)

)
. . . Ỹ

(
q(∆ + 1)

)
after the data slot for CSIR acquisition. We are also interested
in determining the distribution of the resulting channel esti-
mation error, whose covariance matrix, denoted by Z(∆, i),
will play an important role in subsequently determining the
deterministic equivalent of the SINR in each slot i.

A. MMSE Channel Estimation and Channel Estimation Error

In each data slot i, the BS utilizes the pilot signals obtained
in the pilot slots. The BS waits for q pilot slots to occur before
calculating this estimation, and uses the pilot signals from
these later pilot slots and p previous pilot slots to estimate
the channel during the data slot. Since there are ∆ data
slots between two pilot slots, the utilized pilot signals are
Ỹ(n(∆ + 1)) where n runs from −(p− 1) to q.

Lemma 1: The MMSE channel estimator approximates the
autoregressive fast fading channel in time slot i based on the
received pilots at n(∆ + 1), n = −(p− 1), . . . , q as

ĥMMSE(∆, i) = H⋆(∆, i)Ŷ(∆), (9)

where

H⋆(∆, i) =
1

α
√

Ppτp

E(∆, i)
(
M(∆) + Σp+q

)−1

.
(
sH ⊗ I(p+q)Nr

)
,[

Ŷ(∆)
]

n
≜ Ỹ

(
n(∆ + 1)

)
,

Σp+q ≜
σ2

p

α2Ppτp
I(p+q)Nr

,[
E(∆, i)T

]
m

≜ R
(
m(∆ + 1)− i

)
, (10)[

M(∆)
]

n,m
≜ R

(
(m− n)(∆ + 1)

)
, (11)

where n and m run from −(p− 1) to q.
Proof: The lemma can be established using standard

techniques for deriving the MMSE estimator [12], [27], and
rewriting Ŷ(∆) as Ŷ(∆) = (Ip+q ⊗ S)h̄(∆) + ˜̄N, where[
h̄(∆)

]
n

≜ h
(
n(∆ + 1)

)
and

[
˜̄N(∆)

]
n

≜ Ñ
(
n(∆ + 1)

)
.

From Lemma 1, it follows that the MMSE estimate of the
channel is expressed as:

ĥMMSE(∆, i) = H⋆(∆, i)Ŷ(∆)

= H⋆(∆, i)
(
α
√

Pp(Ip+q ⊗ S)h̄(∆) + ˜̄N(∆)
)

=
1

α
√

Ppτp

E(∆, i) (M(∆) + Σp+q)
−1

·
(
α
√

Ppτph̄(∆) +
(
Ip+q ⊗ SH

) ˜̄N(∆)
)

.

(12)

Next, we are interested in deriving the distribution of the
estimated channel and the channel estimation error, since
these will be important for understanding the impact of pilot
spacing on the achievable SINR and spectral efficiency of the
MU-MIMO system. To this end, the following two corollaries
of Lemma 1 – which follow directly from the Lemma and
(12) – will be important in the sequel.

Corollary 1: The estimated channel ĥMMSE(∆, i) is a
circular symmetric complex normal distributed vector
ĥMMSE(∆, i) ∼ CN

(
0, Φ̂MMSE(∆, i)

)
, with

Φ̂MMSE(∆, i) ≜ Eh,n{ĥMMSE(∆, i)ĥH
MMSE(∆, i)}

= E(∆, i)
(
M(∆) + Σp+q

)−1
EH(∆, i).

(13)

An immediate consequence of Corollary 1 is the following
corollary regarding the covariance of the channel estimation
error, as a function of pilot spacing.

Corollary 2: The channel estimation error in slot i,
ĥMMSE(∆, i) − h(∆, i), is complex normal distributed with
zero mean vector and covariance matrix given by:

Z(∆, i) ≜ C−E(∆, i)
(
M(∆) + Σp+q

)−1
EH(∆, i). (14)

In the following section we will calculate the SINR of
the received data symbols. For simplicity of notation, we use
ĥMMSE(∆, i) = ĥ(∆, i), and introduce

b(∆, i) ≜ α
√

P (i)ĥ(∆, i), (15)

with covariance matrix

Φ(∆, i) ≜ E
(
b(∆, i)bH(∆, i)

)
= α2P (i)(C− Z(∆, i)). (16)

To summarize, this subsection derived the MMSE channel
estimator (Lemma 1) that uses the received pilot signals both
before and after a given data slot i and depends on the frame
size ∆ (pilot spacing). As important corollaries of the channel
estimation scheme, we established the distribution of both the
estimated channel (Corollary 1) and the associated channel
estimation error in each data slot i (Corollary 2), as functions
of both the employed pilot spacing and pilot power. These
results serve as a starting point for deriving the achievable
SINR and spectral efficiency in the next subsection.

B. SINR Calculation

We start with recalling an important lemma from [30],
which calculates the per-slot SINR in an AR fast fading
environment when the BS uses the MMSE estimation of the
fading channel, and employs the optimal linear receiver:

G⋆(∆, i) = bH(∆, i)J−1(∆, i), (17)

where J(∆, i) ∈ CNr×Nr is defined as

J(∆, i) ≜
K∑

k=1

bk(∆, i)bH
k (∆, i) + β(∆, i),
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where

β(∆, i) ≜
K∑

k=1

α2
kPkZk(∆, i) + σ2

dINr
. (18)

When using the above receiver, which minimizes the MSE
of the received data symbols in the presence of channel
estimation errors, the following result from [30] will be useful
in the sequel:

Lemma 2 (See [30], Lemma 3): Assume that the receiver
employs MMSE symbol estimation, that is it employs the
optimal linear receiver G⋆(∆, i) given in (17). Then the per-
slot SINR of the estimated data symbols of the tagged user,
γ(∆, i) is given as:

γ(∆, i) = bH(∆, i)J̄−1(∆, i)b(∆, i), (19)

where

J̄(∆, i) ≜ J(∆, i)− b(∆, i)bH(∆, i). (20)

For the AR fading case considered in this paper, based on
the definitions of b(∆, i), J(∆, i) and J̄(∆, i), the per-slot
SINR of the tagged user is then expressed as:

γ(i) = bH(∆, i)J̄−1(∆, i)b(∆, i)
= tr

(
b(∆, i)bH(∆, i)J̄−1(∆, i)

)
. (21)

C. Slot-by-Slot Deterministic Equivalent of the SINR as a
Function of Pilot Spacing ∆

We can now state the following important proposition that
gives the deterministic equivalent of the SINR in data slot
i, γ̄(∆, i), when the number of antennas Nr approaches
infinity. This deterministic equivalent SINR gives a good
approximation of averaging the per-slot SINR of the tagged
user, and can be proved by invoking [28, Theorem 1] or [15,
Theorem 1].

Proposition 1: Assuming, 1 ≤ limNr,K→∞Nr/K ≤ ∞
and Ck/Nr,Zk(∆, i)/Nr have uniformly bounded spectral
norms, the deterministic equivalent SINR of the tagged user
in data slot i can be calculated as:

γ̄(∆, i) = tr
(
Φ(∆, i)T(∆, i)

)
, (22)

where T(∆, i) is defined as:

T(∆, i) ≜

(
K∑

m=2

Φm(∆, i)
1 + δm(∆, i)

+ β(∆, i)

)−1

, (23)

and δm(∆, i) are the solutions of the following system of K
equations

δm(∆, i) = tr

Φm(∆, i)

(
K∑

l=2

Φl(∆, i)
1 + δl(∆, i)

+ β(∆, i)

)−1


(24)

for ∀m = 1, . . . ,K.
The above system of K equations gives the deterministic

equivalent of the SINR of the tagged user, and a different set
of K equations must be used for each user.

To summarize, this section established the slot-by-slot SINR
of a tagged user (γ̄(i)) of a MU-MIMO system operating
over a fast fading channels modelled as AR processes, by
applying our previous result obtained for discrete-time AR
channels reported in [12]. Next, we invoked [28, Theorem
1], to establish the deterministic equivalent SINR for each
slot, as a function of the frame size (pilot spacing) ∆, see
Proposition 1. These results serve as a basis for formulating
the pilot spacing optimization problem over the frame size and
pilot power as optimization variables.

IV. IMPACT OF PILOT SPACING ON THE SINR AND
SPECTRAL EFFICIENCY

In this section, we study the impact of pilot spacing on the
achievable SINR and the SE of all users in the system. The
approximate SE, based on the deterministic equivalent SINR,
associated with the i-th data symbol of user k is

SEk(∆, i) ≜ log
(
1 + γ̄k(∆, i)

)
, (25)

where γ̄k(∆, i) denotes the average SINR of user k when
sending the i-th data symbol, and when ∆ data symbols are
sent between every pair of pilot symbols. Consequently, the
average SE of user k over the (∆ + 1) slot long frame is∑∆

i=1 SEk(∆, i)
∆ + 1

, (26)

which can be optimized over ∆. More importantly, the aggre-
gate average SE of the MU-MIMO system for the K users
can be expressed as:

SE(∆) =
∑K

k=1

∑∆
i=1 SEk(∆, i)

∆ + 1
. (27)

A. An Upper Bound of the Deterministic Equivalent SINR
and the SE

Let us assume that Qk = qkINr , that is the channel vector
hk(t) consists of independent AR processes in the spatial
domain, implying that:

Rk(i) ≜ E
(
hk(t)hH

k (t + i)
)

= Ckeq∗ki, (28)

where qk is a scalar, q∗k denotes complex conjugation, and let
q̄k ≜ Re(qk) < 0.

Note that the exponential approximation of the autocorre-
lation function of the fast fading process expressed in (28) is
related to the Doppler frequency of Rayleigh fading through:

CJ0(2πfDi)︸ ︷︷ ︸
True autocorrelation of Rayleigh fading

≈ R(i), (29)

where J0(.) is the zeroth order Bessel function [32]. Based on
the exponential approximation of this Rayleigh fading process
in (28), the Doppler frequency of the approximate model is
obtained from 2πfDi = Re(q∗ki), i.e. fD = 2π/q̄k.

To optimize (27), we first find an upper bound of SEk(∆, i)
via an upper bound of γ̄k(∆, i). To simplify the notation, the
following discussion refers to the tagged user, and later we
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utilize that the same relations hold for all users. We introduce
the following upper bound of γ̄(∆, i):

γ̄(u)(∆, i)≜ tr

Φ(u)(∆, i)

(
K∑

l=1

α2
l PlZ

(u)
l (∆, i)+σ2

dINr

)−1
,

(30)

where Z(u)(∆, i) and Φ(u)(∆, i) are given by

Z(u)(∆, i) ≜ C− ρ(∆, i)C (ηC + Σ)−1 C, (31)

Φ(u)(∆, i) ≜ α2Pρ(∆, i)C (ηC + Σ)−1 C, (32)

with η being a properly set constant (see Theorem 1), Σ ≜
σ2

p

α2Ppτp
INr

, and

ρ(∆, i) ≜
∑q

ℓ=−(p−1) e2q̄|i−ℓ(∆+1)|. (33)

As mentioned, for γ̄(u) defined in (30) to be a suitable upper
bound of γ̄, we need to set the constant η in (31) and (32)
properly. To this end, the following theorem is helpful.

Theorem 1: If q̄ < 0, and

p + q = 1 and 0 < η < 1, or

p + q = 2 and 0 < η < 1− a, or

p + q = 3 and 0 < η < 1− a(
√

8 + a2 − a)
2

, or

p + q = 4 and 0<η<1− a(a2+1+(a−1)
√

5− 2a+a2)
2

,

(34)

with a ≜ e2q̄(∆+1) then γ̄(∆, i) ≤ γ̄(u)(∆, i).
Proof: We prove the theorem based on the following

inequalities

γ̄(∆, i)
(a)

≤ tr
(
Φ(∆, i)β(∆, i)−1

)
(b)

≤ tr
(
Φ(u)(∆, i)β(∆, i)−1

) (c)

≤ γ̄(u)(∆, i), (35)

which are proved in consecutive lemmas, that is Lemmas 3-6
below.

Remark 1: While Theorem 1 is not possible to generalize
symbolically for cases when p + q > 4, by numerical exper-
iments we found that when 0 < η < L(a), and L(a) =
c3a

3 + c2a
2 − c1a + c0 with c3 = −0.329, c2 = 1.154,

c1 = −1.810 and c0 = 0.985, then γ̄(∆, i) ≤ γ̄(u)(∆, i) holds
at least for the cases when p+ q ≤ 50, that is for virtually all
practically relevant cases.

Lemma 3: Let A, B and C be positive definite matrices
and D be any matrix, such that A ⪯ B (i.e. B − A is a
positive semidefinite matrix), then

A−1 ⪰ B−1, (36)

tr
(
DHAD

)
≤ tr

(
DHBD

)
(37)

tr (AC) ≤ tr (BC) (38)

tr
(
CA−1

)
≥ tr

(
CB−1

)
. (39)

Proof: A−1 ⪰ B−1 is given in [33, p. 495, Corollary
7.7.4(a)]. (37) follows from the fact that DH(B − A)D is

a positive semidefinite matrix since B − A is a positive
semidefinite matrix and for any x

xHDH(B−A)Dx = yH(B−A)y ≥ 0 (40)

where y ≜ Dx. Let C = DHD be the Cholesky decomposi-
tion of C then (38) and (39) follows from (37), by utilizing
the cyclic property of the trace operator.

Lemma 4: For q̄ < 0 and η satisfying (34), the following
relation holds

E(∆, i)
(
M(∆) + Σp+q

)−1
EH(∆, i)

⪯ ρ(∆, i)C (ηC + Σ)−1 C (41)

Proof: The proof for the case p = 2 and q = 1 is in
Appendix A, the proof of the general case is analogous.

Having prepared with Lemma 3 and Lemma 4, we can prove
the (a), (b) and (c) inequalities in (35) by Lemma 5 ((a) part)
and Lemma 6 ((b) and (c) parts) as follows.

Lemma 5: The deterministic equivalent SINR of the tagged
user satisfies

γ̄(∆, i) ≤ tr
(
Φ(∆, i)β(∆, i)−1

)
.

Proof: The proof is in Appendix B.
Lemma 6: When the conditions of Theorem 1 hold, we have

tr
(
Φ(∆, i)β(∆, i)−1

)
≤ tr

(
Φ(u)(∆, i)β(∆, i)−1

)
(42)

tr
(
Φ(u)(∆, i)β(∆, i)−1

)
≤ γ̄(u)(∆, i). (43)

Proof: When the conditions of Theorem 1 hold, Lemma 4
implies that Φ(∆, i) ⪯ Φ(u)(∆, i) and Z(∆, i) ⪰ Z(u)(∆, i).
Using the first relation and the Lemma 3 gives (42), while
using the second relation and Lemma 3 gives (43).

B. Useful Properties of the Upper Bounds on the
Deterministic Equivalent SINR and Overall System Spectral
Efficiency

Theorem 1 is useful, because it establishes an upper bound,
denoted by γ̄(u)(∆, i), of the deterministic equivalent of the
SINR, γ̄(∆, i).

To use the γ̄(u)(∆, i) upper bound for limiting the search
space for an optimal γ̄(∆, i) in Section V, we need the
following properties of the upper bound.

Proposition 2: The γ̄(u)(∆, i) upper bound has the follow-
ing properties: ∂γ̄(u)(∆, i)/∂ρ(∆, i) ≥ 0 and ρ(∆, i) → 0 ⇒
γ̄(u)(∆, i) → 0.

Proof: The proof is in Appendix C.
Similarly, the SINR of user k satisfies the inequality

γ̄k(∆, i) ≤ γ̄
(u)
k (∆, i) where γ̄

(u)
k (∆, i) is defined in a

similar way as γ̄
(u)
1 (∆, i). The γ̄

(u)
k (∆, i) upper bound is

such that ∂γ̄
(u)
k (∆, i)/∂ρk(∆, i) ≥ 0 and ρk(∆, i) → 0 ⇒

γ̄
(u)
k (∆, i) → 0.
Since our most important performance measure is the

overall SE, we are interested in establishing a corresponding
upper bound on the overall SE of the system. To this end, we
introduce the related upper bound on the SE of user k:

SE(u)
k (∆) ≜

∑∆
i=1 log

(
1 + γ̄

(u)
k (∆, i)

)
∆

. (44)
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and bound the aggregate average SE of the MU-MIMO system
(c.f. (27)). Notice that the denominator in SE(u)

k is ∆ while
the denominator in SEk is ∆ + 1. This will be necessary for
the monotonicity property in Proposition 3.

Proposition 3:

SE(u)(∆) ≜
K∑

k=1

SE(u)
k (∆) ≥ SE(∆), (45)

and SE(u)(∆) decreases with ∆ and approaches 0 when ∆
approaches infinity.

Proof: The proof is in Appendix D.

C. Summary

This section first established an upper bound on the deter-
ministic equivalent SINR in Theorem 1. Next, Proposition 2
and Proposition 3 have stated some useful properties of this
upper bound and a corresponding upper bound on the overall
system spectral efficiency. Specifically, Proposition 3 suggests
that the upper bound on the spectral efficiency of the system
is monotonically decreasing in ∆ and tends to zero as ∆
approaches infinity. As we will see in the next section, this
property can be exploited to limit the search space for finding
the optimal ∆.

V. A HEURISTIC ALGORITHM TO FIND THE OPTIMAL
FRAME SIZE (PILOT SPACING)

A. A Heuristic Algorithm for Finding the Optimal ∆

In this section we build on the property of the system-wide
spectral efficiency, as stated by Proposition 3, to develop a
heuristic algorithm to find the optimal ∆. While we cannot
prove a convexity or non-convexity property of SE(∆), we can
utilize the fact that SE(∆) ≤ SE(u)(∆) as follows. As Algo-
rithm 1 scans through the possible values of ∆, it checks if
the current best ∆ (that is ∆opt) is one less than the currently
examined ∆ (Line 17). As it will be exemplified in Figure 6
in the numerical section, the key is to notice that the SE upper
bound determines the search space of the possible ∆ values,
where the associated SE can possibly exceed the currently
found highest SE. Specifically, the search space can be limited
to (Line 18):

∆max = SE(u)−1
(SE∆), (46)

where SE(u)−1
denotes the inverse function of SE(u)(.) and

SE∆ ≜ SE(∆) as calculated in (27). The computational
complexity of Algorithm 1 is O(∆maxK((p+ q)Nr)3), where
the complexity of the matrix inversion in computing Z(∆, i)
is O(((p + q)Nr)3).

B. The Case of Independent and Identical Channel
Coefficients

In the special case where the elements of the vector h(i)
are independent stochastically identical stochastic processes,
the covariance matrices become real multiples of the identity
matrix C ≜ cINr

, Σ = sINr
, R(i) = r(i)INr

, Z(i) =

Algorithm 1 Optimum Frame Size Algorithm Using
an SE Upper Bound

Input: Q, C, Σ, α2, Ptot

1 SE1 = SE(1) using (27), ∆max = SE(u)−1
(SE1)

2 ∆ = 1, ∆opt = ∆max, SEopt = SE(∆opt) using (27)
3 while ∆ < ∆max do
4 for k = 1 . . . K do
5 for i = 1 . . . ∆ do
6 Calculate Rk(i),Rk(∆ + 1),
7 Rk(∆ + 1± i),Rk(2∆ + 2) using (7)
8 Calculate Ek(∆, i) using (10)
9 Calculate Zk(∆, i) using (14)

10 Calculate Φk(∆, i) using (16)
11 Calculate βk(∆, i) using (18)
12 Calculate γ̄k(∆, i) using (22)
13 Calculate SEk(∆, i) using (25)

14 SE∆ = SE(∆) using (27)
15 if SE∆ > SEopt then
16 ∆opt = ∆, SEopt = SE∆

17 if ∆opt = ∆− 1 then
18 ∆max = SE(u)−1

(SE∆)

19 ∆ = ∆ + 1
Output: ∆opt

z(i)INr
, Φ(i) = ϕ(i)INr

, β(i) = β(i)INr
, further more

E(i) = e(i)⊗ INr
, with:

s ≜
σ2

p

α2Ppτp
, (47)

r(i) ≜

{
ceq∗i if i ≥ 0,

ce−qi if i < 0,
(48)

e(∆, i) ≜
[
r(i + (p− 1)(∆ + 1)) . . . r(i− q(∆ + 1))

]
(49)

m(∆) (50)

≜


c r(∆+1) . . . r((∆+1)(p+q−1))

r(∆ + 1)∗ c
. . .

...
...

. . . c r(∆ + 1)
r((∆+1)(p+q−1))∗ . . . r(∆+1)∗ c


z(i) ≜ c− e(∆, i)(m(∆) + sI)−1eH(∆, i), (51)
ϕ(i) ≜ α2P (i)(c− z(i)), (52)

β(i) ≜

(
K∑

k=1

α2
kPkzk(i) + σ2

d

)
. (53)

In this special case, calculating the deterministic equivalent
of the SINR by Proposition 1 simplifies to solving a set of
scalar equations as stated in the following corollary.

Corollary 3: In this special case, the deterministic equiva-
lent of the SINR in slot i, γ̄(i), can be obtained as the solution
of the scalar equation

β(i) =
Nrϕ(i)
γ̄(i)

−
K∑

k=2

ϕk(i)

1 + γ̄(i)ϕk(i)
ϕ(i)

. (54)
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TABLE I
SYSTEM PARAMETERS

Proof: The proof follows from [28] and [29]. Since the
matrices Φk(i) and Zk(i) are constant multiple of identity
matrices, (24) can then be rewritten as

δk(i) = Nrϕk(i)

(
K∑

l=2

ϕl(i)
1 + δl(i)

+ β(i)

)−1

(55)

for k = 1, . . . ,K. Using γ̄(i) = δ1(i) and comparing (55) for
different values of k we get

δk(i) =
ϕk(i)
ϕ1(i)

δ1(i) =
ϕk(i)
ϕ1(i)

γ̄(i). (56)

Substituting the rightmost expression of (56) into (55) with
k = 1 and rearranging gives the corollary.

Notice that calculations inside the inner for loop of Algo-
rithm 1, that is the calculations in Lines 6-13 can be substituted
by equations (48), (49), (51), (52) and (53). Since these
substitutions eliminate the step of inverting a (p + q)Nr

size matrix, the time complexity of Algorithm 1 decreases to
O(∆maxK(p + q)3).

VI. NUMERICAL RESULTS

In this section, we consider a single cell of a MU-MIMO
(K = 2) system with Nr = 10 and Nr = 100 receive
antennas, in which the wireless channel between the served
MS and the BS is modelled as (4) and (28).

The MU-MIMO case with greater number of users (K > 2)
gives similar results albeit with somewhat lower SINR values
from the point of view of the tagged user. The BS estimates the
state of the wireless channel based on the properly (i.e. ∆×
T ) spaced pilot signals using MMSE channel estimation and
interpolation according to Lemma 1, and uses MMSE symbol
estimation employing the optimal linear receiver G⋆(iT ) in
each slot as given in (17). Specifically, in each time slot i =
1 . . . ∆, the BS uses p ≥ 1 pilot signals transmitted by the
MS prior to the data symbols and q pilot symbols sent after
the data symbols, where q = 0 or q = 1. That is, we study
the performance of the “p before, q after” schemes, where q
is either zero or one. In practice, when q = 1, the BS can
store the received data signals until it receives the pilot signal

Fig. 2. Spectral efficiency as a function of frame size (∆) with maximum
Doppler frequency fD = 50, 500, 1500 Hz with Nr = 10 (lower three
curves) and Nr = 100 (upper three curves). At higher maximum Doppler
frequency, the optimum frame size is smaller than at low Doppler frequency.
(The red dot indicates the optimal spectral efficiency for the 2 before 1 after
scheme with Nr = 10 receive antennas when fD = 500 Hz.)

Fig. 3. Spectral efficiency with the 2 before 1 after method as a function of the
pilot/data power ratio and the frame size with Doppler frequency fD = 50Hz,
fD = 500 Hz and fD = 1500 Hz when Nr = 10. In all three cases, the
spectral efficiency depends heavily on the employed pilot power and pilot
spacing (frame size).

in slot i = ∆ + 1 before using an MMSE interpolation of the
channel states between i = 0 and i = ∆+1. Furthermore, we
will assume that the BS estimates perfectly the autocorrelation
function of the channel, including the associated maximum
Doppler frequency and, consequently, the characterizing zeroth
order Bessel function.

The most important system parameters are listed in Table I.
Here we assume that the slot duration (T ) corresponds to a
symbol duration in 5G orthogonal frequency division multi-
plexing (OFDM) systems using 122 MHz clock frequency,
which can be used up to 20 GHz carrier frequencies [34].
Note that the numerical results presented below – except for
the benchmarking results in Figures 8 and 9 – are obtained
by the analytical calculation and numerical evaluation of the
deterministic equivalent of the SINR and the corresponding
average spectral efficiency. The benchmarking results shown
in Figures 8 and 9 are obtained by Monte Carlo simulations.

Figure 2 shows the achieved spectral efficiency averaged
over the data slots i = 1 . . . ∆, that is averaged over the
data slots of a frame of size ∆ + 1 when using the 2 before
1 after scheme (p = 2, q = 1). Short frames imply that
the pilot overhead is relatively large, which results in poor
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Fig. 4. Optimal frame size as a function of the maximum Doppler frequency,
and the channel estimation scheme employed.

Fig. 5. Optimal spectral efficiency as a function of the maximum Doppler
frequency, that is the spectral efficiency when using the optimal frame size.

spectral efficiency. On the other hand, too large frames (that
is when ∆ is too large) make the channel estimation quality
in the “middle” time slots poor, since for these time slots both
available channel estimates ĥ(0) and ĥ(∆ + 1) convey little
useful information, especially at high Doppler frequencies
when the channel ages rapidly. Indeed, as seen in Figure 2,
the frame size has a large impact on the achievable spectral
efficiency, suggesting that the optimum frame size depends
critically on the Doppler frequency. As we can see, the spectral
efficiency as a function of the frame size is in general neither
monotone nor concave, and is hence hard to optimize.

The average spectral efficiency as a function of the pilot/data
power ratio and the frame size is shown in Figure 3. This figure
clearly shows that setting the proper frame size and tuning
the pilot/data power ratio are both important to maximize
the average spectral efficiency of the system. The optimal
frame size and power configuration are different for different
Doppler frequencies, which in turn emphasizes the importance
of accurate Doppler frequency estimates.

Figure 4 shows the optimal frame size as a function of
the maximum Doppler frequency, and 5 shows the achieved
spectral efficiency when using the optimal frame size. At fD =
500 Hz, for example, when the optimal frame size is 6, the
achieved spectral efficiency when using Nr = 10 antennas
is a bit below 1 bps/Hz. We can see that setting the optimal
frame size is indeed important, because it helps to make the

Fig. 6. Upper bounding the achievable spectral efficiency as a function of
the frame size (∆) at fD = 500 Hz and fD = 1500 Hz. Note that the upper
bound is monotonically decreasing, which helps to limit the search space for
the optimum frame size.

Fig. 7. Maximum achievable spectral efficiency vs p when using the “p
before” and “p before 1 after” schemes for channel estimation at fD = 100 Hz
and fD = 500 Hz Doppler frequency. At a high Doppler frequency, the
optimal spectral efficiency is practically insensitive to increasing p beyond 5.
(The red dot indicates the 2 before 1 after scheme.)

achievable spectral efficiency quite robust with respect to even
a significant increase in the Doppler frequency.

Figure 6 illustrates the upper bounds on spectral efficiency
as a function of the frame size for different Doppler fre-
quencies. Recall from Figure 2 that the spectral efficiency
of the system is a non-concave function of the frame size.
Therefore, limiting the possible frame sizes that can optimize
spectral efficiency is useful, which can be achieved by the
upper bounds shown in the figure. Since the upper bound
is monotonically decreasing, finding a point of the spectral
efficiency curve (see the curve marked with fD = 500 Hz and
its upper bounding curve) with a negative derivative helps to
find the range of possible frame sizes that maximize spectral
efficiency. For fD = 500 Hz, as illustrated in the figure, larger
frame sizes than ∆ = 34 would lead to a lower upper bound
than the spectral efficiency achieved at ∆ = 6. Therefore,
when searching for the optimal ∆, once we found that the
spectral efficiency at ∆ = 7 is less than at ∆ = 6 (negative
derivative), the search space is limited to [6, 34].

Figure 7 shows the maximum achievable spectral efficiency
by setting the optimum frame size as a function of the utilized
pilots when using the “p before” and “p before 1 after”
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Fig. 8. Benchmarking some of the “p before q after” schemes with the
three channel estimation and prediction schemes proposed in [6] in terms of
the achieved per-slot SINR. Since the Truong-Heath “current” scheme uses
a pilot in each slot, it can achieve higher SINR in between pilots when the
frame size is set suboptimally (here ∆ = 30 instead of the optimal ∆ = 6.)

Fig. 9. Benchmarking in terms of the Cumulative Distribution Function
(CDF) of the achieved SINR in slot 1 when the frame size is set to 20. Notice
that the deterministic equivalent of the SINR for the 2 before 1 after scheme
is an approximation of the average SINR over the channel realizations.

schemes for channel estimation. (For an easy reference, in this
figure the “2 before 1 after” scheme for the case when fD

is 500 Hz, is represented by the red dot.) At a high Doppler fre-
quency, the optimal spectral efficiency is practically insensitive
to increasing p beyond 5, while at a lower Doppler frequency,
the optimal spectral efficiency by setting the frame size to its
optimal value benefits from utilizing a greater number of past
pilots. Since using a Kalman filter gives the same performance
as when p → ∞, we see that setting p to a large finite
number achieves practically identical performance as that of
the Kalman filter.

Figure 8 compares the “1 before”, “2 before” and the “2
before, 1 after” schemes with the three schemes (“current”,
“aged” and “predicted”) proposed in [6]. The “current” chan-
nel estimation method of [6] uses a pilot in each data slot,
and therefore, it achieves the same SINR in each slot. The
“aged” and “predicted” methods use only the pilot at the
beginning of each frame. All three methods proposed in [6]
use maximum ratio combining for data estimation. In contrast,
the “2 before 1 after” scheme uses three pilots and achieves
higher SINR in the beginning and at the end of each frame.
The “aged” and “predicted” methods reach their respective

highest SINR at the beginning of the frame, after which both
the channel estimation quality and consequently the achieved
SINR degrades due to channel aging.

Figure 9 shows the CDF of the achieved SINR in slot
1 when the frame size is set to 20. The 2 before 1 after scheme
produces a somewhat higher SINR in the entire support of the
SINR, while the Truong-Heath schemes achieve lower SINR
values due to employing maximum ratio combining reception
as opposed to the MMSE reception used by the p before q
after schemes used in this paper.

VII. CONCLUSION

This paper investigated the fundamental trade-off between
using resources in the time domain for pilot signals and data
signals in the uplink of MU-MIMO systems operating over
fast fading wireless channels that age between subsequent
pilot signals. While previous works indicated that when the
autocorrelation coefficient between subsequent channel real-
ization instances in discrete time is high, both the channel
estimation and the MU-MIMO receiver can take advantage of
the memoryful property of the channel in the time domain.
However, previous works do not answer the question how
often the channel should be observed and estimated such
that the subsequent channel samples are sufficiently correlated
while taking into account that pilot signals do not carry
information bearing symbols and degrade the overall spectral
efficiency. To find the optimal pilot spacing, we first estab-
lished the deterministic equivalent of the achievable SINR and
the associated overall spectral efficiency of the MU-MIMO
system. We then used some useful properties of an upper
bound of this spectral efficiency, which allowed us to limit the
search space for the optimal pilot spacing (∆). The numerical
results indicate that the optimal pilot spacing is sensitive to the
Doppler frequency of the channel and that proper pilot spacing
has a significant impact on the achievable spectral efficiency.

APPENDIX A
PROOF OF LEMMA 4

Proof: Notice that

[M(∆)]n,m =

{
eq(∆+1)(m−n)C if n ≤ m

eq(∆+1)(n−m)∗C if n > m
(57)

that is

M(∆)

=


1 eq(∆+1) . . . eq(∆+1)(p+q−1)

(eq(∆+1))
∗

1
. . .

...
...

. . . 1 (eq(∆+1))
∗

eq(∆+1)(p+q−1)∗ . . . (eq(∆+1))
∗

1


︸ ︷︷ ︸

≜Mp+q(∆)

⊗C.

(58)

The smallest eigenvalue of Mp+q(∆) is analytical for p +
q ≤ 4 and it is provided in (34). For p + q > 4, it is not
analytical and Remark 1 provides an order 3 polynomial lower
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bound of the smallest eigenvalue, which is numerically tested
up to p + q = 50. Let

M(u)(∆) ≜


η 0 · · · 0
0 η · · · 0
...

. . .
...

0 0 · · · η


︸ ︷︷ ︸

≜M
(u)
p+q(∆)

⊗C. (59)

When η satisfies to (34), we have

M(u)
p+q(∆) ⪯ Mp+q(∆). (60)

Utilizing that the spectrum of a Kronecker product σ(A⊗B)
is [35]

σ(A⊗B) = {µAµB | µA ∈ σ(A), µB ∈ σ(B) }, (61)

we further have

M(u)(∆) ⪯ M(∆), (62)

which implies(
M(u)(∆) + Σp+q

)−1 ⪰
(
M(∆) + Σp+q

)−1
, (63)

according to (36). The statement of the lemma comes from
(63) using (37), M(u)(∆) = ηIp+q ⊗C, and noting that

E(∆, i)
(
M(u)(∆) + Σp+q

)−1
EH(∆, i)

= E(∆, i)

ηC + Σ
. . .

ηC + Σ


−1

EH(∆, i)

=
q∑

ℓ=−(p−1)

R(i− ℓ(∆ + 1))(ηC + Σ)−1RH(i− ℓ(∆ + 1))

= ρ(∆, i)C (ηC + Σ)−1 C, (64)

where R(i) and ρ(∆, i) are defined in (28) and (33).

APPENDIX B
PROOF OF LEMMA 5

Proof:

γ̄(∆, i)

= E

tr

Φ(∆, i)

(
K∑

k=2

bl(∆, i)bH
l (∆, i) + β(∆, i)

)−1


=
∫

v2∈RNr

. . .

∫
vK∈RNr

K∏
k=2

Pr(bl(∆, i) = vl)

· tr

Φ(∆, i)

(
K∑

k=2

vlvH
l + β(∆, i)

)−1
 dvK . . . dv2

≤
∫

v2∈RNr

∫
vK∈RNr

K∏
k=2

Pr(bl(∆, i) = vl)

· tr
(
Φ(∆, i)β(∆, i)−1

)
dvK . . . dv2

= tr
(
Φ(∆, i)β(∆, i)−1

)
,

where we used that
∑K

l=2 vlvH
l is a positive definite matrix,∑K

l=2 vlvH
l + β(∆, i) ⪰ β(∆, i) and Lemma 3.

APPENDIX C
PROOF OF PROPOSITION 2

Proof: To prove monotonicity in ρ first notice that

ρ(∆1, i1) > ρ(∆2, i2) ⇒ Z(u)(∆1, i1) ⪯ Z(u)(∆2, i2),

ρ(∆1, i1) > ρ(∆2, i2) ⇒ Φ(u)(∆1, i1) ⪰ Φ(u)(∆2, i2).

and so

ρ(∆1, i1) > ρ(∆2, i2)
⇓

Φ(u)(∆1, i1)

(
K∑

l=1

α2
l PlZ

(u)
l (∆1, i1) + σ2

dINr

)−1

⪰ Φ(u)(∆2, i2)

(
K∑

l=1

α2
l PlZ

(u)
l (∆2, i2) + σ2

dINr

)−1

⇓

tr

Φ(u)(∆1, i1)

(
K∑

l=1

α2
l PlZ

(u)
l (∆1, i1) + σ2

dINr

)−1


≥ tr

Φ(u)(∆2, i2)

(
K∑

l=1

α2
l PlZ

(u)
l (∆2, i2) + σ2

dINr

)−1
,

that is: γ̄(u)(∆1, i1) ≥ γ̄(u)(∆2, i2).

Finally, to prove convergence to 0, notice that

ρ(∆, i) → 0 ⇒ Z(u)(∆1, i1) → C,

ρ(∆, i) → 0 ⇒ Φ(u)(∆1, i1) → 0.

And so, when ρ(∆, i) → 0, we have

γ̄(u)(∆, i)

= tr

Φ(u)(∆, i)

(
K∑

l=1

α2
l PlZ

(u)
l (∆, i) + σ2

dINr

)−1


ρ(∆,i)→0→ tr

0

(
K∑

l=1

α2
l PlC + σ2

dINr

)−1
 = 0.

APPENDIX D
PROOF OF PROPOSITION 3

Proof: From Theorem 1 and (44) the inequality follows.
For monotonicity, notice that ρk(∆ + 1, i) < ρk(∆, i) and
ρk(∆+1, i+1) < ρk(∆, i). Since by Proposition 2 the upper
bound of the SINR is increasing with ρk we have

γ̄
(u)
k (∆ + 1, i) ≤ γ̄

(u)
k (∆, i)

γ̄
(u)
k (∆ + 1, i + 1) ≤ γ̄

(u)
k (∆, i), (65)

from which it follows that

log
(
1 + γ̄

(u)
k (∆ + 1, i)

)
≤ log

(
1 + γ̄

(u)
k (∆, i)

)
(66)

log
(
1 + γ̄

(u)
k (∆ + 1, i + 1)

)
≤ log

(
1 + γ̄(u)(∆, i)

)
. (67)
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Let ℓ = arg mini γ̄
(u)
k (∆ + 1, i), we then have

1
∆ + 1

×
∆+1∑
i=1

log
(
1 + γ̄

(u)
k (∆ + 1, i)

)
≤ 1

∆
×

(
ℓ−1∑
i=1

log
(
1 + γ̄

(u)
k (∆ + 1, i)

)
+

∆+1∑
i=ℓ+1

log
(
1 + γ̄

(u)
k (∆ + 1, i)

))
,

since on the right hand side we are removing the smallest
term before calculating the mean. Invoking (66) and (67) on
the first and second sum, respectively, it follows that

1
∆ + 1

×
∆+1∑
i=1

log
(
1 + γ̄

(u)
k (∆ + 1, i)

)
≤ 1

∆ + 1
×

(
ℓ−1∑
i=1

log
(
1 + γ̄

(u)
k (∆, i)

)
+

∆∑
i=ℓ

log
(
1 + γ̄

(u)
k (∆, i)

))

=
1
∆
×

∆∑
i=1

log
(
1 + γ̄

(u)
k (∆, i)

)
. (68)

From which it follows that

SE(u)
k (∆ + 1) =

∑∆+1
i=1 log

(
1 + γ̄

(u)
k (∆ + 1, i)

)
∆ + 1

≤
∑∆

i=1 log
(
1 + γ̄

(u)
k (∆, i)

)
∆

= SE(u)
k (∆),

(69)

that is SE(u)
k (∆) is decreasing in ∆.

To prove convergence to zero, recall from Proposition 2 that
∂γ̄

(u)
k (∆, i)/∂ρk(∆, i) ≥ 0 and

ρk(∆, i) → 0 ⇒ γ̄
(u)
k (∆, i) → 0

⇒ log
(
1 + γ̄

(u)
k (∆, i)

)
→ 0, (70)

where

ρk(∆, i) = e2q̄k(∆+1+i) + e2q̄ki + e2q̄k(∆+1−i).

We show that for any ε > 0, there is some M such that

SE(u)(M) < ε. (71)

Due to q̄k < 0, we have ρk(∆, i) < ρk(1, 1), which implies

log
(
1 + γ̄

(u)
k (∆, i)

)
< log

(
1 + γ̄

(u)
k (1, 1)

)
, (72)

for all ∆ and i. Let A ≜ log
(
1+ γ̄

(u)
k (1, 1)

)
and N such that

Nε− 2A > 0, and set

ϵ ≜
Nε− 2A

N − 2
. (73)

Since q̄k < 0, we have

ρk(∆, i)
< (p + q) max(r(i + (p− 1)(∆ + 1)), . . . , r(i− q(∆ + 1)))

= (p + q)e2q̄k min(i,∆+1−i),

and it follows that for ∆
N ≤ i ≤ (N−1)∆

N

ρk(∆, i) < (p + q)e2q̄k
∆
N . (74)

Notice that by equation (70) we can choose some large M ,
such that

M

N
≤ i ≤ (N − 1)M

N
⇒ log(1 + γ̄

(u)
k (M, i)) < ϵ. (75)

We can now show that when M = ∆, then SE(u)
k (∆) < ε.

To this end, we split up the sum in the numerator of (69), that
is
∑∆

i=1 log(1 + γ̄(u)(∆, i)), into three terms, and bound the
first and third terms using the general upper bound A, and the
middle term by ϵ:

SE(u)
k (∆) =

∑∆
i=1 log(1 + γ̄(u)(∆, i))

∆

=
∑∆/N

i=1 log(1 + γ̄(u)(∆, i))
∆

+

∑(N−1)∆/N
i=∆/N+1 log(1 + γ̄(u)(∆, i))

∆

+

∑∆
i=(N−1)∆/N+1 log(1 + γ̄(u)(∆, i))

∆

<
(∆/N)A

∆
+

((N − 2)∆/N)ϵ
∆

+
(∆/N)A

∆

=
2A + (N − 2)ϵ

N
= ε, (76)

where the last equation is due to the definition of ϵ in (73),
which completes the proof.
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